Gravitational catapult and a spacecraft

AI Thread Summary
The gravitational catapult, or slingshot effect, occurs when a spacecraft approaches a massive body like a planet, gaining speed as it is accelerated by the planet's gravity. As the spacecraft follows a hyperbolic or parabolic path, it exits with the same speed it approached but with a changed direction, resulting in a different velocity. If the planet is in motion, the spacecraft can also gain a portion of the planet's orbital velocity during the flyby. This technique was famously utilized by Pioneer 10 and 11 for interplanetary travel, marking significant advancements in space exploration. Understanding this effect is crucial for optimizing spacecraft trajectories and fuel efficiency.
mios76
Messages
10
Reaction score
0
Hello.

"Another notable thing is that Pioneer 10 used the gravitational catapulting effect of Jupiter. That was the first time that was ever done for interplanetary light. Pioneer 11 followed in its footsteps about seven years later to go out of the solar system."

That text was taken from:
http://quest.nasa.gov/sso/cool/pioneer10/general/amonetxt.html

Can anyone explain how such a GRAVITATIONAL CATAPULT works?

Thanks.

Miro
 
Last edited by a moderator:
Astronomy news on Phys.org
It is a fact of physics that if a free body moving through space approaches a massive object, such as a planet or star. The free moving object will be accelerated toward the (shall we say) planet. The path followed by the moving body (say satellite) could be either hyperbolic or parabolic, depending upon its speed and (I believe) angle of approach to the massive body. Both of these paths have the satellite exiting the planet with the SAME speed with which it approached. The satellite will have changed its direction therefore will have a different velocity due to the acceleration of the massive body.

Now consider what happens as the satellite approaches the planet when planet is itself moving, as in a orbit. Now while the satellite is being accelerated toward the planet it will gain speed due to its path through the planets gravitational well and it will pick up a bit of the planets ORBITAL velocity. This is the sling shot. That bit of planetary orbital velocity that is gained in the trip past. The satellite will lose any velocity gained due simply to the gravity of the planet, but will not lose the fraction of orbital velocity acquired durning the fly by.
 
TL;DR Summary: In 3 years, the Square Kilometre Array (SKA) telescope (or rather, a system of telescopes) should be put into operation. In case of failure to detect alien signals, it will further expand the radius of the so-called silence (or rather, radio silence) of the Universe. Is there any sense in this or is blissful ignorance better? In 3 years, the Square Kilometre Array (SKA) telescope (or rather, a system of telescopes) should be put into operation. In case of failure to detect...
Thread 'Could gamma-ray bursts have an intragalactic origin?'
This is indirectly evidenced by a map of the distribution of gamma-ray bursts in the night sky, made in the form of an elongated globe. And also the weakening of gamma radiation by the disk and the center of the Milky Way, which leads to anisotropy in the possibilities of observing gamma-ray bursts. My line of reasoning is as follows: 1. Gamma radiation should be absorbed to some extent by dust and other components of the interstellar medium. As a result, with an extragalactic origin, fewer...
Both have short pulses of emission and a wide spectral bandwidth, covering a wide variety of frequencies: "Fast Radio Bursts (FRBs) are detected over a wide range of radio frequencies, including frequencies around 1400 MHz, but have also been detected at lower frequencies, particularly in the 400–800 MHz range. Russian astronomers recently detected a powerful burst at 111 MHz, expanding our understanding of the FRB range. Frequency Ranges: 1400 MHz: Many of the known FRBs have been detected...
Back
Top