vecctor analysis and got the mathematical formulae for gradientby hershal Tags: analysis, formulae, gradient, mathematical, vecctor 

#1
Aug3005, 12:16 PM

P: 10

I was reading vecctor analysis and got the mathematical formulae for gradient but could not understand its physical meaning.
What is the physical meaning of gradient of a scalar ? And of a vector . Also, I wanted to know the physical meanings of Divergence and Curl . 



#2
Aug3005, 12:25 PM

Emeritus
Sci Advisor
P: 7,437

I'd suggest a book reference  "Div, Grad, Curl and all that".
http://www.amazon.com/exec/obidos/tg...08712?v=glance The physical meaning of the gradient of a scalar function is that it's the steepness of the slope. Imagine height being a scalar, then the gradient of the height would be a vector pointing "uphill", the length of the vector is proportional to the steepness of the slope  in civil engineering turns the gradient (note the similarity) of a road running directly uphill/downhill. Divergence of a vector field is asociated with conserved quantities, if the divergence is zero there are no "sources" or "sinks". Curl of a vector field is associated with it's rotation, if the curl is zero the field is irrotational. This may not be detailed enough  it's a tricky subject, but the book I quoted is really very good at providing detailed examples and physical explanations. 



#3
Sep105, 09:30 AM

P: 10

Thanks ! pervect, i'll see if i can get that grad,div,curl book .




#4
Sep105, 10:26 AM

Admin
P: 21,634

vecctor analysis and got the mathematical formulae for gradient
The gradient is a differential operator on a scalar field, [tex]\phi[/tex]. The gradient, grad[tex]\phi[/tex], is a "vector field" defined by the requirement that
grad[tex]\,\phi\,\cdot[/tex] ds = d[tex]\,\phi[/tex] where d[tex]\,\phi[/tex] is the differential change in the scalar field, [tex]\phi[/tex], corresponding to the arbitrary space displacement, ds, and from this, d[tex]\,\phi[/tex] =  grad [tex]\,\phi\,[/tex] ds cos [tex]\theta[/tex], where is the angle between the displacement vector and the line formed between two points of interest in the scalar field. Since cos [tex]\theta[/tex] has a maximum value of 1, that is when [tex]\theta[/tex]=0, it is clear that the rate of change is greatest if the differential displacement is in the direction of grad[tex]\,\phi\,[/tex], or stated another way, "The direction of the vector grad[tex]\,\phi[/tex] is the direction of maximum rate of change (spatiallyspeaking) of [tex]\,\phi[/tex] from the point of consideration, i.e. direction in which [tex]\frac{d\phi}{ds}[/tex] is greatest." The gradient of [tex]\phi[/tex] is considered 'directional derivative' in the direction of the maximum rate of change of the scalar field [tex]\phi[/tex]. Think of contours of elevation on a mountain slope. Points of the same (constant) elevation have the same gravitational potential, [tex]\phi[/tex]. Displacement along (parallel) to the contours produce no change in [tex]\phi[/tex] (i.e. d[tex]\phi[/tex] = 0). Displacements perpendicular (normal) to the equipotential are oriented in the direction of most rapid change of altitude, and d[tex]\phi[/tex] has the maximum value. Isotherms are equipotentials with respect to heat flow. See related discussion on the directional derivative (forthcoming). Examples of scalar fields:
Examples of vector fields:
I am doing something similar for div and curl 



#5
Sep105, 11:59 AM

P: 37

Thanks Astronuc, I can't wait.



Register to reply 
Related Discussions  
purpose of each of the "operators", divergence, gradient and curl?  Calculus  12  
Use of curl of gradient of scalar  Differential Equations  10  
divergence and curl  Calculus & Beyond Homework  2  
Gradient, divegrance and curl??? del operator!!!  Calculus & Beyond Homework  3  
Curl and Divergence  Introductory Physics Homework  8 