MHB Acute angle of right triangles

  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Angle Triangles
AI Thread Summary
The discussion centers on the properties of right triangles formed by a rectangle inscribed in a semicircle with a radius of 1. It is clarified that the acute angles of these triangles are not necessarily all equal to 45 degrees, as they depend on the rectangle's height. The area of the rectangle is set to 1, leading to a relationship between its height and width that can be solved using Pythagorean Theorem. Trigonometric methods can also be applied to find the angles, confirming that they can indeed be 45 degrees under certain conditions. Ultimately, both geometric and trigonometric approaches yield consistent results regarding the dimensions and angles of the triangles.
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

We have a rectangle inside a semicircle with radius $1$ :

View attachment 9703

From the midpoint of the one side we draw a line to the opposite vertices and one line to the opposite edge.

View attachment 9704

Are the acute angles of the right triangles all equal to $45^{\circ}$ ? (Wondering)

All four triangles are similar, aren't they? We have that the hypotenuse of each right triangle is equal to $1$, since it is equal to the radius of the circle.
I am stuck right now about the angles. (Wondering)
 

Attachments

  • rechteck.JPG
    rechteck.JPG
    3.5 KB · Views: 114
  • triangles.JPG
    triangles.JPG
    4.3 KB · Views: 109
Mathematics news on Phys.org
A little thought should show you those statements are NOT true! There exist many different such rectangles, with many different such angles, depending on the height of the rectangle.
 
HallsofIvy said:
A little thought should show you those statements are NOT true! There exist many different such rectangles, with many different such angles, depending on the height of the rectangle.

In this case the resulting smaller rectangles look like squares and that's why maybe I got confused. (Doh)

So when we know that the area of the big rectangle is $1$ and we want to calculate the length of the sides, it is not a good idea to use trigonometry, right? (Wondering)

It is better to do the following:

View attachment 9705

Let $x$ be the height and $w$ the width. Since $M$ is the midpoint we get that $w=2y$.
At the right triangle we can Pythagoras' Theorem and we get that $y=\sqrt{1-x^2}$.
The area of the big rectangle is $1$ so we get that $x\cdot w=1 \Rightarrow x\cdot 2\sqrt{1-x^2}=1$ and from that eauation we can calculate $x$. Btw we would get the same result if we would consider the acute angles to be $45^{\circ}$, so in this case they are indeed like that.
 

Attachments

  • height.JPG
    height.JPG
    3.5 KB · Views: 127
Last edited by a moderator:
mathmari said:
So when we know that the area of the big rectangle is $1$ and we want to calculate the length of the sides, it is not a good idea to use trigonometry, right?

Hey mathmari!

We can do it with trigonometry as well.
The width of the rectangle is $2\cos\phi$ and the height is $\sin\phi$, isn't it? (Thinking)
So the area is:
$$2\cos\phi \cdot \sin\phi = \sin(2\phi) =1\implies \phi=\frac\pi 4$$

mathmari said:
Let $x$ be the height and $w$ the width. Since $M$ is the midpoint we get that $w=2y$.
At the right triangle we can Pythagoras' Theorem and we get that $y=\sqrt{1-x^2}$.
The area of the big rectangle is $1$ so we get that $x\cdot w=1 \Rightarrow x\cdot 2\sqrt{1-x^2}=1$ and from that eauation we can calculate $x$.

Btw we would get the same result if we would consider the acute angles to be $45^{\circ}$, so in this case they are indeed like that.

Yep. That works as well. (Nod)
 
Thanks a lot! 😇
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top