Calculating the flux density between two magnets

AI Thread Summary
The discussion centers on calculating the flux density between two 1 Tesla magnets spaced 3cm apart to deflect a 28 SWG wire by passing a current through it. Due to the significant falloff in magnetic field strength as the wire is positioned 1.5cm from each magnet, a simple assumption of 2 Teslas is inaccurate. Two methods for determining flux density are suggested: measuring the force on the wire with a known current or using calculations that consider the reluctance of the magnetic circuit. The conversation highlights that the actual flux density at the wire's location is much lower than the rated Tesla value, leading to insufficient force to move the wire. Suggestions include increasing the current or using thinner wire to achieve the desired deflection.
SteveDavies
Messages
3
Reaction score
0
TL;DR Summary
Two rectangular magnets, each of 1 Tesla, are spaced 3cm apart, with their large areas facing each other - North facing South. How do I find the flux density at the point between them?
This is for an experiment to deflect a 28 SWG wire between two magnets, 3cm apart, by passing a current through it (example attached). The force on the wire is obviously F = BIL, but the wire will be passing at 1.5cm from each magnet so there will be some significant fall off of B and I can't assume B (in BIL) to be 2 Teslas. The magnets are 5cm × 1.9cm × 0.6cm and 1 Tesla each.

magnets.gif


Many thanks,

Steve.
 
Engineering news on Phys.org
You're right that there will be falloff, and the flux density throughout the region between the magnet faces will not be uniform. You can predict the magnetic field for a rectangular magnet along its central axis fairly easily. See: this page. It's a commercial site with which I have no association or affiliation.

Elsewhere in the region between the magnets you'll probably have to resort to Finite Element Modelling software. There's one such mentioned on that website and they appear to be offering for free download.
 
Last edited:
  • Like
Likes SteveDavies
gneill said:
You're right that there will be falloff, and the flux density throughout the region between the magnet faces will not be uniform. You can predict the magnetic for a rectangular magnet along its central axis fairly easily. See: this page. It's a commercial site with which I have no association or affiliation.

Elsewhere in the region between the magnets you'll probably have to resort to Finite Element Modelling software. There's one such mentioned on that website and they appear to be offering for free download.

Thanks Gneill. Very useful!

Steve.
 
SteveDavies said:
Summary:: Two rectangular magnets, each of 1 Tesla, are spaced 3cm apart, with their large areas facing each other - North facing South. How do I find the flux density at the point between them?

This is for an experiment to deflect a 28 SWG wire between two magnets, 3cm apart, by passing a current through it (example attached). The force on the wire is obviously F = BIL, but the wire will be passing at 1.5cm from each magnet so there will be some significant fall off of B and I can't assume B (in BIL) to be 2 Teslas. The magnets are 5cm × 1.9cm × 0.6cm and 1 Tesla each.

View attachment 256250

Many thanks,

Steve.

Two approaches, one would be to pass a known current through the wire and measure the force, then B=F/IL.

The second is the calculation method, and this is not as simple as it may seem. Permanent magnets are generally not offered as having x tesla. Fundamentally permanent magnets are a source of H or magneto motive force, the resultant B or flux density is determined by the reluctance of the magnetic circuit the magnet is in.

Now a permanent magnet will exhibit some flux density even in free space, since it has built in reluctance dependent on the shape of the magnet. It is this flux density that the linked page is calculating.

As soon as more magnets come into play, or you have a reluctance path other than air, these equations will not work. In this case you will have to at minimum estimate your magnetic circuit similar to this:
1580394456938.png


If you want to have the most force out of your wire in the case you have drawn, you'll want to add in magnetic path (ie iron) linking the backs of the magnets to each other so the only high reluctance path is through the air gap.
 
  • Like
Likes SteveDavies
Thanks essenmein.

The problem was that I couldn't get any movement from the wire. I think it's because at 28 SWG it was too rigid and heavy. I didn't have a horseshoe magnet available, so I was using separate magnets.

The Magnadur magnets are rated at 1 Tesla but according to supermagnete.de (I emailed them) the Tesla rating is measured at the centre of the magnet and at the surface it is always a lot less. Using their calculator, with the wire is at a distance of about 15mm from each magnet, it will have received a total field of about 0.1 Telsa.

So, over a length of 50mm (the length of the magnet) and at a current of 0.5A you get:

F = B I L

F = (0.1) (0.5) (0.05) = 0.0025 N

Which is equivalent to a mass of 0.25mg and is not enough to move the wire.

There are a couple of videos on YouTube though where they have managed to get this to work, but I think the wire they are using is a lot thinner - more like piano wire.

Thanks again for you suggestions,

Steve.
 
My preference, when all else fails, is more current. :smile:

If you build a little pulse switch thing with a fet and current limiting resistor to a power supply or something then you can put more amps through the wire, albeit for a shorter duration. I'd play with duration and some decent amps and see if you can get the wire to wiggle. Only reference I have is 110Adc will make the positive and negative wires move noticeably closer to each other when hanging in free air.
 
  • Like
Likes SteveDavies
Hi all I have some confusion about piezoelectrical sensors combination. If i have three acoustic piezoelectrical sensors (with same receive sensitivity in dB ref V/1uPa) placed at specific distance, these sensors receive acoustic signal from a sound source placed at far field distance (Plane Wave) and from broadside. I receive output of these sensors through individual preamplifiers, add them through hardware like summer circuit adder or in software after digitization and in this way got an...
I have recently moved into a new (rather ancient) house and had a few trips of my Residual Current breaker. I dug out my old Socket tester which tell me the three pins are correct. But then the Red warning light tells me my socket(s) fail the loop test. I never had this before but my last house had an overhead supply with no Earth from the company. The tester said "get this checked" and the man said the (high but not ridiculous) earth resistance was acceptable. I stuck a new copper earth...
Thread 'Beauty of old electrical and measuring things, etc.'
Even as a kid, I saw beauty in old devices. That made me want to understand how they worked. I had lots of old things that I keep and now reviving. Old things need to work to see the beauty. Here's what I've done so far. Two views of the gadgets shelves and my small work space: Here's a close up look at the meters, gauges and other measuring things: This is what I think of as surface-mount electrical components and wiring. The components are very old and shows how...
Back
Top