Density of a patch of an accretion disk

In summary, the potential ##\phi## at the point labelled in the diagram is ##-GM(R^2 + z^2)^{-1/2}##, where ##R## is the cylindrical radial coordinate. Expanding to first order gives \begin{align*}\phi = -\frac{GM}{R} + \frac{GM z^2}{2R^3} \implies \frac{\partial \phi}{\partial z} = -\frac{GMz}{R^3}\end{align*}The circular speed of the disk ##v_C(R) = \sqrt{GM/R} = \Omega R##
  • #1
ergospherical
966
1,276
Homework Statement
A small patch of a thin accretion disk (around a point mass) at a radius where the angular velocity is ##\Omega## can be assumed to have an isothermal static atmosphere. Show that the density varies with ##z## (distance from the mid-plane) as\begin{align*}
\rho = \rho_0 \mathrm{exp}[-\gamma \Omega^2 z^2/(2c_s^2)]
\end{align*}(##\gamma## is adiabatic index)
Relevant Equations
Fluid equations
In the frame of the patch ##-(1/\rho) \nabla p = - \nabla \phi##, and putting ##\nabla p = (\partial p/\partial \rho) \nabla \rho = c_s^2 \nabla \rho## and taking the ##z## component gives\begin{align*}
-\frac{c_s^2}{\rho} \frac{\partial \rho}{\partial z} = -c_s^2 \frac{\partial(\log{\rho})}{\partial z} = \frac{\partial \phi}{\partial z}
\end{align*}integrate:\begin{align*}
\rho = \rho_0 \mathrm{exp}[-\phi/c_s^2]
\end{align*}What is the form of the potential ##\phi##? I thought ##\phi = \phi_{\mathrm{rot}} + \phi_{\mathrm{grav}} = -\frac{1}{2} \Omega^2 r^2 + \phi_{\mathrm{grav}}##, but the centrifugal potential has no ##z## dependence and I don't see why the gravitational potential ##\phi_{\mathrm{grav}}## should depend on ##\Omega##.
 
Physics news on Phys.org
  • #2
Isn't the gravitation ##\Omega## dependent by the assumption of a "static atmosphere"?
 
  • #3
use basic principles of hydrostatic equilibrium and consider the ideal gas law.
 
  • #4
For an element ##m## of the accretion disk located on the central plane (z = 0), the gravitational attraction ##F_G## toward the central mass ##M## is balanced by the centrifugal force ##F_C## in the frame of ##m##. However, for ##z \neq 0##, the two forces no longer balance because of the tilt of ##F_G##. For small ##z##, the two forces produce a net downward force on ##m##. Thus, equilibrium in the z-direction requires an additional upward force (caused by pressure variation in the z-direction).

1683487906907.png
 
  • #5
Cheers! The gravitational potential at the point labelled in the diagram is ##\phi = -GM(R^2 + z^2)^{-1/2}##, where ##R## is the cylindrical radial coordinate. Expanding to first order gives \begin{align*}
\phi = -\frac{GM}{R} + \frac{GM z^2}{2R^3} \implies \frac{\partial \phi}{\partial z} = -\frac{GMz}{R^3}
\end{align*}The circular speed of the disk ##v_C(R) = \sqrt{GM/R} = \Omega R## implies ##\Omega^2 = GM/R^3##, so equivalently ##\partial \phi / \partial z = -\Omega^2 z##. The momentum equation in the ##z## direction gives\begin{align*}
-c_s^2 \frac{\partial \log{\rho}}{\partial z} = \Omega^2 z \implies \rho = \rho_0 \mathrm{exp}[-\Omega^2 z^2 /(2c_s^2)]
\end{align*}Looks like I'm missing the adiabatic index ##\gamma##?
 
  • #6
ergospherical said:
Looks like I'm missing the adiabatic index ##\gamma##?
Show that the ideal gas law can be written as ##P = \large \frac{c_s^2}{\gamma} \rho##.
 
  • #7
For an adiabatic gas I have ##c_s^2 = (\partial p/\partial \rho) |_S##, and given the equation of state in the form ##p = K\rho^{\gamma}## that means ##c_s^2 = \gamma p / \rho##. But starting from the hydrostatic equation\begin{align*}
\frac{1}{\rho} \frac{\partial p}{\partial z} = \frac{\partial \phi}{\partial z}
\end{align*}it looks like I can exchange\begin{align*}
\frac{\partial p}{\partial z} = \frac{\partial p}{\partial \rho} \frac{\partial \rho}{\partial z} = c_s^2 \frac{\partial \rho}{\partial z}
\end{align*}
 
  • #8
ergospherical said:
For an adiabatic gas I have ##c_s^2 = (\partial p/\partial \rho) |_S##, and given the equation of state in the form ##p = K\rho^{\gamma}## that means ##c_s^2 = \gamma p / \rho##.
Ok. Sound vibrations are assume to be adiabatic. Thus, we use ##(\partial p / \partial \rho) |_S## when calculating ##c_s^2##.

ergospherical said:
it looks like I can exchange\begin{align*}
\frac{\partial p}{\partial z} = \frac{\partial p}{\partial \rho} \frac{\partial \rho}{\partial z} = c_s^2 \frac{\partial \rho}{\partial z}
\end{align*}
The problem statement says to assume an isothermal static atmosphere. So, when considering how ##P## and ##\rho## vary with ##z##, we would assume ##T## remains constant. So, $$\frac{\partial p}{\partial z} = \left(\frac{\partial p}{\partial \rho}\right)_T \frac{\partial \rho}{\partial z} $$
 
  • Like
Likes ergospherical
  • #9
I've just noticed, the problem statement says that the adiabatic sound speed is ##c_s^2##, i.e. ##c_s^2 = \gamma p / \rho##, but the atmosphere is assumed isothermal - so ##c_s^2|_{\mathrm{iso}} = p / \rho = c_s^2 / \gamma##, which clears it up. Thanks!
 
  • Like
Likes hutchphd and TSny

1. What is the density of a patch of an accretion disk?

The density of a patch of an accretion disk refers to the amount of matter contained within a specific area of the disk. It is typically measured in grams per cubic centimeter (g/cm³) or kilograms per cubic meter (kg/m³).

2. How is the density of a patch of an accretion disk calculated?

The density of a patch of an accretion disk is calculated by dividing the mass of the patch by its volume. This can be done using various methods such as spectral analysis, radio interferometry, and X-ray observations.

3. What factors can affect the density of a patch of an accretion disk?

The density of a patch of an accretion disk can be affected by several factors, including the mass and size of the central object, the temperature of the disk, and the presence of other objects or gas clouds in the vicinity.

4. Why is the density of a patch of an accretion disk important?

The density of a patch of an accretion disk is important because it provides crucial information about the physical processes occurring within the disk. It can also help scientists understand the formation and evolution of the disk and the objects within it.

5. How does the density of a patch of an accretion disk change over time?

The density of a patch of an accretion disk can change over time due to various factors such as the accretion rate, the movement and interaction of objects within the disk, and changes in the disk's temperature. These changes can provide insights into the dynamic nature of the disk and its surrounding environment.

Similar threads

  • Advanced Physics Homework Help
Replies
3
Views
394
  • Advanced Physics Homework Help
Replies
4
Views
1K
  • Advanced Physics Homework Help
Replies
9
Views
2K
  • Advanced Physics Homework Help
Replies
1
Views
923
  • Advanced Physics Homework Help
Replies
3
Views
1K
Replies
11
Views
2K
  • Advanced Physics Homework Help
Replies
3
Views
4K
  • Advanced Physics Homework Help
Replies
11
Views
2K
  • Advanced Physics Homework Help
Replies
1
Views
1K
  • Advanced Physics Homework Help
Replies
1
Views
426
Back
Top