Determining Form factor from density distribution

Rayan
Messages
17
Reaction score
1
Homework Statement
Show that the form factor of density distribution $$ \rho (r) $$ is $$F(q^2) $$
Relevant Equations
$$ \rho (r) = \rho_0 \cdot e^{-\frac{r}{R}} $$
$$F(q^2) = \frac{8\pi \rho_0 R^3}{1 + \frac{q^2R62}{h^2} }$$
So my first thought was that I can just use Fourier trick and integrate:

$$ F(q^2) = \int_V \rho(r) \cdot e^{ i \frac{ \vec{q} \cdot \vec{r} }{h} } d^3r $$

$$ F(q^2) = 2\pi \rho_0 \int_0^{\infty} r^2 \cdot e^\frac{-r}{R} dr \cdot \int_0^{\pi} \sin{\theta} \cdot e^{ -i \frac{q \cdot r \cos(\theta) }{h} } d\theta $$

$$ F(q^2) = 2\pi \rho_0 \frac{-h}{iq} ( \frac{ e^{ i \frac{q \cdot r }{h} } - e^{ -i \frac{q \cdot r }{h} } }{r} ) \int_0^{\infty} r^2 \cdot e^{\frac{-r}{R}} dr $$

$$ F(q^2) = \frac{-4\pi h \rho_0}{q} \int_0^{\infty} \sin(\frac{qr}{h}) e^{\frac{-r}{R}} \cdot r dr $$

But the integral is very complicated, which probably means I missed up somewhere on the way, but I can't really see it! Any tips?
 
Last edited:
Physics news on Phys.org
Rayan said:
$$ F(q^2) = 2\pi \rho_0 \frac{-h}{iq} ( \frac{ e^{ i \frac{q \cdot r }{h} } - e^{ -i \frac{q \cdot r }{h} } }{r} ) \int_0^{\infty} r^2 \cdot e^{\frac{-r}{R}} dr $$
The expression in parentheses is a function of ##r## and should be inside the integral. Instead of combining the two exponentials into a sine function, you might try leaving them as exponential functions. Can you work out the following integral? $$\int_0^{\infty} e^{ i \frac{q \cdot r }{h}}\cdot e^{\frac{-r}{R}} rdr $$
 
TSny said:
The expression in parentheses is a function of ##r## and should be inside the integral. Instead of combining the two exponentials into a sine function, you might try leaving them as exponential functions. Can you work out the following integral? $$\int_0^{\infty} e^{ i \frac{q \cdot r }{h}}\cdot e^{\frac{-r}{R}} rdr $$
You're totally right! I managed to solve this integral instead and got the right answer! Thank you so much!!:)
 
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
The value of H equals ## 10^{3}## in natural units, According to : https://en.wikipedia.org/wiki/Natural_units, ## t \sim 10^{-21} sec = 10^{21} Hz ##, and since ## \text{GeV} \sim 10^{24} \text{Hz } ##, ## GeV \sim 10^{24} \times 10^{-21} = 10^3 ## in natural units. So is this conversion correct? Also in the above formula, can I convert H to that natural units , since it’s a constant, while keeping k in Hz ?
Back
Top