A Domain Wall Geometries: Continuous Coordinates, Discontinuous Metric

  • A
  • Thread starter Thread starter Roy_1981
  • Start date Start date
  • Tags Tags
    Domain Wall
Roy_1981
Messages
51
Reaction score
8
Hi all, I need some help regarding domain wall geometries, essentially a bubble of some spacetime (say deSiiter or flat) inside another kind, say anti-deSitter. For simplicity it is spherical symmetric situation and we are intent on using Schwarzschild like static coordinates. So now I am used to the set up where the metric is continuous across the (infinitely thin) domain wall/bubble wall, while the static time coordinate is discontinuous across while the radial coordinate is a global (continuous) coordinate.

But I have heard that one can also set up coordinates so that the metric is discontinuous while BOTH the static coordinates "r" and "t" are continuous. My problem is I can't seem to locate a reference where this is done or illustrated. All the references I can locate use continuous metric and discontinuous coordinates.

I would tremendously appreciate if any of you forum members/user can suggest a reference on "continuous coordinates/ discontinuous metric" choice.
 
Physics news on Phys.org
Roy_1981 said:
the static time coordinate is discontinuous

I don't understand what this means. If you are using a single coordinate chart, the coordinate values must change continuously from event to event everywhere in the chart. So a discontinuous coordinate appears to violate a basic requirement of a coordinate chart.

Roy_1981 said:
I have heard that one can also set up coordinates so that the metric is discontinuous

This would also violate a basic requirement of a coordinate chart.
 
Just as idealized situations with surface charge layers and distributional (delta function) volume charge densities, and with electric field discontinuities are useful in undergrad electromagnetism, mass hypersurface layers with metric component discontinuities and distributional stress-energy tensors are useful in general relativity, e.g., for domain walls. This is called the the thin shell/junction condition formalism.
 
Hi George Jones,

Indeed you are in the right direction. In case of gravity you can integrate Einstein equation across the shell to obtain junction conditions, relating metric derivatives to matter on thin shell. But what I asked is a bit different - its about a choice of gauge (coordinates) and as I mentioned there are two choices (perhaps more) to parametrize the geometry. atm I just can't seem to locate any reference which uses the second gauge choice.
 
In this video I can see a person walking around lines of curvature on a sphere with an arrow strapped to his waist. His task is to keep the arrow pointed in the same direction How does he do this ? Does he use a reference point like the stars? (that only move very slowly) If that is how he keeps the arrow pointing in the same direction, is that equivalent to saying that he orients the arrow wrt the 3d space that the sphere is embedded in? So ,although one refers to intrinsic curvature...
ASSUMPTIONS 1. Two identical clocks A and B in the same inertial frame are stationary relative to each other a fixed distance L apart. Time passes at the same rate for both. 2. Both clocks are able to send/receive light signals and to write/read the send/receive times into signals. 3. The speed of light is anisotropic. METHOD 1. At time t[A1] and time t[B1], clock A sends a light signal to clock B. The clock B time is unknown to A. 2. Clock B receives the signal from A at time t[B2] and...
So, to calculate a proper time of a worldline in SR using an inertial frame is quite easy. But I struggled a bit using a "rotating frame metric" and now I'm not sure whether I'll do it right. Couls someone point me in the right direction? "What have you tried?" Well, trying to help truly absolute layppl with some variation of a "Circular Twin Paradox" not using an inertial frame of reference for whatevere reason. I thought it would be a bit of a challenge so I made a derivation or...
Back
Top