Doubt Regarding Shearing Stresses In a Beam

AI Thread Summary
A discussion centers on the shear stress distribution in a simply supported beam subjected to a concentrated load at its midpoint. It is noted that shear stress is maximum at the neutral axis and zero at the top and bottom surfaces of the beam. The participants explore the implications of zero shear stress at the top surface, questioning how material can resist shearing under load. The conversation highlights that shear stress varies quadratically through the beam's depth and is governed by equilibrium conditions. The integration of stress components is essential for understanding shear distribution, with references to established principles in beam theory.
Abhishekdas
Messages
198
Reaction score
0
Lets say we have a beam which is simply supported at the two extreme ends(support conditions don't matter in my question). A concentrated transverse load is applied at the halfway point. Now let's say we take a section at x= L/3 where is L the length of the beam. Now we know that transverse shear stress at that section is max at the neutral axis and minimum(0) at the top. Now I define the axes
x- along the axis of the beam
y- along towards top
z- coming out of the plane of paper
let y vary from t/2 to -t/2. Now take a very small element at the top of the section at y = t/2. Now at this element tau(xY) (shear stress on this face(perpendicular to x axis) in the Y direction) is zero according to " transverse shear stress is minimum(0) at the top". But how is this possible because apparently even at the top the material will tend to be sheared due to the transverse load. How am I wrong? I would really appreciate is someone could help me out.
 
Last edited:
Engineering news on Phys.org
the surface at top and bottom are free and hence inorder to have forces balanced, on taking a small element at top of the beam ; since there are no shear stresses towards atmosphere there cannot be any shear stress inside.
 
Thank you pukb for your reply.
SO basically its right when i say that the shear stresses in the xy(towards the downward portion) is actually zero. Which means maybe the material out there does not tend to get sheared?
Maybe true but hard to digest. I am having problems as to how to visualize it physically that the material won't be/tend to be sheared. :confused:
 
The shear is only 0 on at the top and bottom surface. For a rectangular cross section, the shear along a line through the beam from top to bottom is a quadratic function.

This is fairly easy to show if you understand stress in 3 dimensions. The axial direct stress varies with the depth of the beam. ##\sigma = My/I## where y is distance from the neutral axis. To maintain equilibrium, the shear has to be the integral of that stress component. The "arbitrary constant" in the integral is fixed by the boundary conditions that pukb described, i.e. the shear is zero at the top and bottom surface of the beam.
 
AlephZero said:
To maintain equilibrium, the shear has to be the integral of that stress component.
Thank you AlephZero for the reply, but could you please elaborate which integral you are talking about. The derivation for shear stress the way I know it is that you take forces due to moments (axial) for a small element in either direction. If the element length is dx the change in moment is dM and this difference in forces in either direction is accounted for by the shear force at that element. So you end up with tau=dM/dx/Ib*(∫ydA) integrated from y1 to C and here b is the width of the element at y=y1. Is it the same thing you are referring to?
 
How did you find PF?: Via Google search Hi, I have a vessel I 3D printed to investigate single bubble rise. The vessel has a 4 mm gap separated by acrylic panels. This is essentially my viewing chamber where I can record the bubble motion. The vessel is open to atmosphere. The bubble generation mechanism is composed of a syringe pump and glass capillary tube (Internal Diameter of 0.45 mm). I connect a 1/4” air line hose from the syringe to the capillary The bubble is formed at the tip...
Thread 'Physics of Stretch: What pressure does a band apply on a cylinder?'
Scenario 1 (figure 1) A continuous loop of elastic material is stretched around two metal bars. The top bar is attached to a load cell that reads force. The lower bar can be moved downwards to stretch the elastic material. The lower bar is moved downwards until the two bars are 1190mm apart, stretching the elastic material. The bars are 5mm thick, so the total internal loop length is 1200mm (1190mm + 5mm + 5mm). At this level of stretch, the load cell reads 45N tensile force. Key numbers...
I'd like to create a thread with links to 3-D Printer resources, including printers and software package suggestions. My motivations are selfish, as I have a 3-D printed project that I'm working on, and I'd like to buy a simple printer and use low cost software to make the first prototype. There are some previous threads about 3-D printing like this: https://www.physicsforums.com/threads/are-3d-printers-easy-to-use-yet.917489/ but none that address the overall topic (unless I've missed...
Back
Top