Eigenvalues of Hamiltonian operator

  • #1
Juli
21
5
Homework Statement
Consider a system with two spin-1 particles, which is described by the Hamiltonian operator

## H = \lambda \vec{S}_1 \cdot \vec{S}_2 ##

with ##\lambda \in \mathbb{R} ##.

1. Express H in terms of the total spin ## \vec{S} = \vec{S}_1 + \vec{S}_2 ##.

2. What eigenvalues does H have and how are these degenerate?
Relevant Equations
##\vec{S}^2 = S(S+1)\hbar^2##
##\vec{S_1}^2 = S_1(S_1+1)\hbar^2##
##\vec{S_2}^2 = S_2(S_2+1)\hbar^2##
Hello, I try to solve this problem, and I think a) wasn't too hard, I have the following solution:

##H = \lambda (\frac{\vec{S^2-(\vec{S_1}^2+\vec{S_2}^2)}{2})##.
I struggle with 2. I find it very abstract. When I have H as a matrix I know how to calculate eigenvalues, but I don't know how to proceed with this general approach.

I tried to go somewhere with the eigenvalues of S, but I didn't get far...

Can someone help me solve this?
 
Physics news on Phys.org
  • #2
Expand the right-hand side of the operator ##~S^2=(\vec S_1+\vec S_2)\cdot(\vec S_1+\vec S_2)~## and solve for the operator ##\vec S_1\cdot \vec S_2##. Its eigenvalues are the eigenvalues of the operator on the right-hand side.
 
  • #3
I did the first task and got this ##H = \lambda (\frac{\vec{S^2-(\vec{S_1}^2+\vec{S_2}^2)}{2})##
But I don't know how to get the eigenvalues of the operator on the right-hand side. Are they the eigenvalues of the individual spins?
 

Similar threads

  • Advanced Physics Homework Help
Replies
1
Views
1K
  • Advanced Physics Homework Help
Replies
4
Views
718
  • Advanced Physics Homework Help
Replies
3
Views
363
  • Advanced Physics Homework Help
Replies
13
Views
1K
  • Advanced Physics Homework Help
Replies
3
Views
1K
  • Advanced Physics Homework Help
Replies
6
Views
1K
  • Advanced Physics Homework Help
Replies
6
Views
935
  • Advanced Physics Homework Help
Replies
5
Views
2K
  • Advanced Physics Homework Help
Replies
3
Views
969
  • Advanced Physics Homework Help
Replies
1
Views
1K
Back
Top