I Falling into a massive black hole is not necessarily noticeable

  • I
  • Thread starter Thread starter Kekkuli
  • Start date Start date
  • Tags Tags
    Black hole Falling
AI Thread Summary
Falling into a massive black hole may not be noticeable due to the weaker fall acceleration at the Schwarzschild radius, which is a result of the black hole's mass. The concept of "fall acceleration" is technically defined and does not apply in the same way at the Schwarzschild radius, where hovering is impossible. Observers falling through the event horizon would not experience anything special because spacetime remains locally Lorentzian. Tidal forces, which are less pronounced in larger black holes, play a more significant role than acceleration in the experience of falling. Thus, the larger the black hole, the less noticeable the effects of falling through the event horizon become.
Kekkuli
Messages
9
Reaction score
2
I find it interesting that the more massive the black hole, the weaker the fall acceleration at the distance of the Schwarzschild radius - that's why you wouldn't necessarily notice anything special in the event horizon.

table.jpg

blackhole.jpg
 
Space news on Phys.org
And why do you find that in any way strange?
 
Kekkuli said:
the fall acceleration at the distance of the Schwarzschild radius
##GM / R^2## is not "the fall acceleration" except in a very technical sense: it is the "redshifted" proper acceleration of an observer "hovering" at ##R##. So, for example, if an observer at infinity were holding up an object at ##R## using a very long rope, ##GM / R^2## is the force per unit mass that the observer at infinity would have to exert on the rope. But the object at ##R## would not experience that acceleration; the object's proper acceleration would be ##GM / (R^2 \sqrt{1 - 2GM / (c^2 R)})##.

(Similar remarks apply to the coordinate acceleration of a free-falling object relative to a hovering observer at ##R##, which I suspect is what you are thinking of as "fall acceleration".)

Also, at the Schwarzschild radius, there are no "hovering" observers; it is impossible to "hover" at the Schwarzschild radius, or for an object to be held there by a very long rope, even for an instant. So even the technical sense of "fall acceleration" above is no longer meaningful at the Schwarzschild radius.

Kekkuli said:
that's why you wouldn't necessarily notice anything special in the event horizon
No, it isn't. You wouldn't notice anything special falling through the horizon because spacetime is locally Lorentzian there just like it is everywhere else. It has nothing to do with "fall acceleration".
 
I would argue that acceleration is much less relevant than tidal forces. And big BH's have small tides.
 
  • Like
Likes PeterDonis and Ibix
Kekkuli said:
I find it interesting that the more massive the black hole, the weaker the fall acceleration at the distance of the Schwarzschild radius - that's why you wouldn't necessarily notice anything special in the event horizon.
Saying "notice" you seem to think of tidal force or spaghettification. Yes, the larger the black hole the less you feel it, as already said in #4. The reason is tidal force goes with 1/M².
 
Abstract The Event Horizon Telescope (EHT) has significantly advanced our ability to study black holes, achieving unprecedented spatial resolution and revealing horizon-scale structures. Notably, these observations feature a distinctive dark shadow—primarily arising from faint jet emissions—surrounded by a bright photon ring. Anticipated upgrades of the EHT promise substantial improvements in dynamic range, enabling deeper exploration of low-background regions, particularly the inner shadow...
https://en.wikipedia.org/wiki/Recombination_(cosmology) Was a matter density right after the decoupling low enough to consider the vacuum as the actual vacuum, and not the medium through which the light propagates with the speed lower than ##({\epsilon_0\mu_0})^{-1/2}##? I'm asking this in context of the calculation of the observable universe radius, where the time integral of the inverse of the scale factor is multiplied by the constant speed of light ##c##.
Title: Can something exist without a cause? If the universe has a cause, what caused that cause? Post Content: Many theories suggest that everything must have a cause, but if that's true, then what caused the first cause? Does something need a cause to exist, or is it possible for existence to be uncaused? I’m exploring this from both a scientific and philosophical perspective and would love to hear insights from physics, cosmology, and philosophy. Are there any theories that explain this?
Back
Top