B Finding all possible sums given 2 lists, matched one to one

  • B
  • Thread starter Thread starter mishima
  • Start date Start date
  • Tags Tags
    Sums
AI Thread Summary
To find all possible sums from two lists of numbers, A and B, where each element can only be used once, one must consider the permutations of the lists. The total number of permutations is calculated as n!, but this number is reduced due to repeated elements in the lists. The challenge lies in accounting for these duplicates to avoid counting the same sum multiple times. The user seeks guidance on efficiently calculating these sums, potentially using a spreadsheet for analysis. Ultimately, the goal is to explore all unique combinations of sums derived from the two lists.
mishima
Messages
576
Reaction score
43
Hi, its been a while since I have thought about this type of math, and I can't really remember how to do this or what its even called. I have two lists of numbers:

A: 8, 8, 9, 10, 7, 8
B: 6, 5, 4, 3, 3, 3

I want to find all the different ways I can add elements from A with elements of B. For instance, just adding them vertically as they are here I could get one combination as:

C: 14, 13, 13, 13, 10, 11

When an element from a list is used, its gone. For example, if I added 10 from A and 6 from B, I can't use 6 again (or vice versa). Can anyone nudge me in the right direction?
 
Mathematics news on Phys.org
The number of ways you can pick an entry in the A list to be added to an entry in the B list is the number of permutations, which is n! This number will be reduced by the fact that many of the sums are the same, which feels like a hard problem to handle.
 
Ok, so 720 possibilities. I could've sworn there was a way to account for repeats but like I said it has been a while since I have touched on this style of thinking. Ultimately I am just trying to make a spreadsheet to crunch it all out.
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Replies
24
Views
3K
Replies
4
Views
2K
Replies
1
Views
1K
Replies
2
Views
2K
Replies
8
Views
2K
Replies
2
Views
2K
Back
Top