Finding Tension and Power in an Eskimo's Sled Pull

  • Thread starter Thread starter dman_PL
  • Start date Start date
  • Tags Tags
    Power Tension
AI Thread Summary
The discussion focuses on calculating the tension in a rope and the power due to friction when an Eskimo pulls a sled. The sled, weighing 100 kg, is pulled at a constant speed of 1.5 m/s with a friction coefficient of 0.1. The correct tension in the rope is determined to be approximately 113 N, derived from the horizontal component needed to overcome friction. Additionally, the power dissipated due to friction at this speed is calculated to be 147 W. The initial approach to the problem was corrected after realizing the need to account for the horizontal force component accurately.
dman_PL
Messages
15
Reaction score
0

Homework Statement



An Eskimo pulls a 100kg sled with a constant force through the snow
at a constant speed of 1.5m/s. He applies this force by pulling on a rope at 30◦
to the horizontal. There is a coefficient of kinetic friction between the sled and the snow of 0.1

1)Find the tension in the rope
2)What is the power due to the frictional force (rate at which energy is being dissipated)
the instant he stops pulling on the sled

Homework Equations


The Force of Tension = (mass)(acceleration) - (Coefficient of Friction)(-mass · gravity)
2) Power= Work/Time


The Attempt at a Solution


1) I thought it was a simple just plug it in, so i did Fτ=(100kg)(1.5m/s)-(.1)(-100kg*9.8)=248N
2) I used the 248N to find the amount of work that was done, so Work=248N*1.5m/s*Cos(30)=322.16. However after this I am confused as to how i find time.
 
Physics news on Phys.org
A sled of MASS 100kg has a WEIGHT of 100 x 9.81N =981N
A coeff of friction of 0.1 means that the force of friction between the sled and the snow is 0.1 x 981N = 98.1N
So to pull the sled at (ANY) CONSTANT SPEED (velocity) needs a horizontal force of 98.1N
This force is provided by the horizontal component of the tension in the rope
So T x Cos30 = 98.1 gives T = 98.1/Cos30 = 113N
Power = force x velocity
So with a friction force of 98.1N at a velocity of 1.5m/s the power is 98.1 x 1.5 = 147W
 
Thanks :) i guess my initial equation was off
 
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...
I was thinking using 2 purple mattress samples, and taping them together, I do want other ideas though, the main guidelines are; Must have a volume LESS than 1600 cubic centimeters, and CAN'T exceed 25 cm in ANY direction. Must be LESS than 1 kg. NO parachutes. NO glue or Tape can touch the egg. MUST be able to take egg out in less than 1 minute. Grade A large eggs will be used.
Back
Top