Finding the potential difference in a circuit

In summary: However, due to the impossible nature of the circuit described, it is not possible to accurately determine the potential difference using either path.
  • #1
jolly_math
51
5
Homework Statement
For the circuit below, calculate the potential difference between points a and b. The current in the 2.00 Ω resistor is 0.909 A, and the current in the 4.00 Ω resistor is 1.636 A.
Relevant Equations
loop rule
junction rule
1675383984537.png

The solution chooses the centre wire to determine the potential difference, where Va−(0.909 A)(2.00 Ω)=Vb and Vb - Va = -1.82

If I choose the top wire (passing through the 12 V battery and 4 Ω resistor), Va - 12 + (1.636 A)(4.00 Ω)=Vb, and Vb - Va is different (= -5.46 V). Why would this path not work?

Thank you.
 
Physics news on Phys.org
  • #2
I think the problem is that the situation they describe is impossible, as it breaks Kirchhoff's circuit law for voltage. Given the currents they've specified for the top two resistors, the PDs across the three elements in the upper circuit are 12, 0.909 x 2 and 1.636 x 4 and, whatever signs we give to either of those last two, we cannot get the three PDs to add to zero as Kirchhoff requires.

I suspect the question just contains a misprint, which makes it unsolvable.

For an impossible circuit, we should not be surprised if it gives different measurements when approached in different ways.

EDIT: In fact, they should not specify any currents in the circuit. We can calculate all currents using just the voltages of the two cells and the three resistances. Use Kirchhoff's laws. The current they specify for the 2 Ohm resistor is correct but that for the 4 Ohm resistor is not. It needs to be way more than that.
 
Last edited:
  • Like
Likes jolly_math, phinds, TSny and 1 other person
  • #3
andrewkirk said:
The current they specify for the 2 Ohm resistor is correct but that for the 4 Ohm resistor is not.
Yes. The 1.636 A is the current in the 6 Ohm resistor.
 
  • Like
Likes SammyS and andrewkirk
  • #4
andrewkirk said:
I think the problem is that the situation they describe is impossible, as it breaks Kirchhoff's circuit law for voltage. Given the currents they've specified for the top two resistors, the PDs across the three elements in the upper circuit are 12, 0.909 x 2 and 1.636 x 4 and, whatever signs we give to either of those last two, we cannot get the three PDs to add to zero as Kirchhoff requires.

I suspect the question just contains a misprint, which makes it unsolvable.

For an impossible circuit, we should not be surprised if it gives different measurements when approached in different ways.

EDIT: In fact, they should not specify any currents in the circuit. We can calculate all currents using just the voltages of the two cells and the three resistances. Use Kirchhoff's laws. The current they specify for the 2 Ohm resistor is correct but that for the 4 Ohm resistor is not. It needs to be way more than that.
Okay, thank you. Ignoring the actual values, could either path be used to get the same potential difference?
 
  • #5
jolly_math said:
Okay, thank you. Ignoring the actual values, could either path be used to get the same potential difference?
yes
 
  • Like
Likes jolly_math

What is potential difference in a circuit?

Potential difference, also known as voltage, is the difference in electric potential energy between two points in a circuit. It is measured in volts (V) and is the driving force that causes electric charges to flow through a circuit.

How do you calculate potential difference?

Potential difference can be calculated by dividing the amount of work done in moving a unit of charge from one point to another by the magnitude of that unit of charge. This is represented by the equation V = W/Q, where V is the potential difference, W is the work done, and Q is the charge.

What is the unit of measurement for potential difference?

The unit of measurement for potential difference is the volt (V). One volt is equal to one joule of energy per coulomb of charge.

How does potential difference affect the flow of current in a circuit?

The higher the potential difference in a circuit, the greater the force pushing electric charges to flow. This means that a higher potential difference will result in a larger current flowing through the circuit.

What factors can affect the potential difference in a circuit?

The potential difference in a circuit can be affected by the type of power source used, the resistance of the circuit, and the number and arrangement of components in the circuit. Changes in any of these factors can cause a change in the potential difference.

Similar threads

  • Introductory Physics Homework Help
Replies
8
Views
711
  • Introductory Physics Homework Help
Replies
2
Views
922
Replies
2
Views
740
  • Introductory Physics Homework Help
Replies
3
Views
5K
  • Introductory Physics Homework Help
Replies
1
Views
5K
  • Introductory Physics Homework Help
Replies
3
Views
257
  • Introductory Physics Homework Help
Replies
28
Views
1K
  • Introductory Physics Homework Help
Replies
30
Views
1K
  • Introductory Physics Homework Help
Replies
5
Views
1K
  • Introductory Physics Homework Help
Replies
1
Views
762
Back
Top