yungman
- 5,741
- 294
This is copy from Griffiths Introduction to Electrodynamics page 424.
V = \frac 1 {4\pi\epsilon_0} \int \frac {\rho_{(\vec r',t_r)}}{ \eta } d \tau \hbox{'} \Rightarrow \; \nabla V = \frac 1 {4\pi\epsilon_0} \int \nabla \left ( \frac {\rho_{(\vec r',t_r)}}{\eta}\right ) d \tau \hbox{'} = \frac 1 {4\pi\epsilon_0} \int \left [ (\nabla \rho) \frac 1 {\eta} + \rho \nabla \left ( \frac 1 { \eta} \right ) \right ] d \tau \hbox{'}
Where \eta = | \vec r - \vec r’|
Please help me in deriving the following equation:
1) \nabla \rho = \dot{\rho} \nabla t_r = -\frac 1 c \dot {\rho} \nabla (\eta)
Where \dot{\rho} = \frac {\partial \rho}{\partial t}
2) Also why is \nabla (\eta) = \hat {(\eta) }
Thanks
V = \frac 1 {4\pi\epsilon_0} \int \frac {\rho_{(\vec r',t_r)}}{ \eta } d \tau \hbox{'} \Rightarrow \; \nabla V = \frac 1 {4\pi\epsilon_0} \int \nabla \left ( \frac {\rho_{(\vec r',t_r)}}{\eta}\right ) d \tau \hbox{'} = \frac 1 {4\pi\epsilon_0} \int \left [ (\nabla \rho) \frac 1 {\eta} + \rho \nabla \left ( \frac 1 { \eta} \right ) \right ] d \tau \hbox{'}
Where \eta = | \vec r - \vec r’|
Please help me in deriving the following equation:
1) \nabla \rho = \dot{\rho} \nabla t_r = -\frac 1 c \dot {\rho} \nabla (\eta)
Where \dot{\rho} = \frac {\partial \rho}{\partial t}
2) Also why is \nabla (\eta) = \hat {(\eta) }
Thanks