How is the UTS different from breaking stress and why?

AI Thread Summary
The ultimate tensile strength (UTS) is defined as the maximum stress a material can withstand, but materials can still deform without breaking after reaching this point due to necking, which reduces the cross-sectional area. The engineering stress-strain curve assumes a constant cross-section, leading to a peak UTS followed by a decrease in stress, while the true stress-strain curve accounts for the changing area, showing continuous stress increase until rupture. Beyond the yield point, Hooke's Law no longer applies, meaning that increased strain does not correlate with increased force. As a result, materials can elongate significantly with little additional load after yielding. Understanding these distinctions is crucial for accurate material analysis and engineering applications.
Tangeton
Messages
62
Reaction score
0
By definition the UTS is the maximum stress a material can take. But how exactly can a material not break after reaching the UTS if it is so? Why is there a breaking stress and how come on the graph of stress against strain the stress seems to decreases before the braking stress?
 
Physics news on Phys.org
Tangeton said:
By definition the UTS is the maximum stress a material can take. But how exactly can a material not break after reaching the UTS if it is so? Why is there a breaking stress and how come on the graph of stress against strain the stress seems to decreases before the braking stress?
There is an engineering stress strain curve and a true stress strain curve. The engineering stress strain curve assumes that the member cross section area remains constant at all levels of tensile load, but in actuality, cross section starts to significantly reduce (called necking) at high stress values beyond the yield point, in which case if you plot true stress, which accounts for the reduced cross section area , versus strain, the true stress value always increases up to rupture, whereas if you use engineering stress, you get a peak on the curve prior to significant necking, and beyond that, the stress gets lower because it is assumed that cross section remains constant . The value of the engineering stress at this peak is called the ultimate tensile strength, whereas the breaking strength is the rupture stress at point of failure .
 
  • Like
Likes billy_joule
PhanthomJay said:
There is an engineering stress strain curve and a true stress strain curve. The engineering stress strain curve assumes that the member cross section area remains constant at all levels of tensile load, but in actuality, cross section starts to significantly reduce (called necking) at high stress values beyond the yield point, in which case if you plot true stress, which accounts for the reduced cross section area , versus strain, the true stress value always increases up to rupture, whereas if you use engineering stress, you get a peak on the curve prior to significant necking, and beyond that, the stress gets lower because it is assumed that cross section remains constant .

I understand the point you're trying to make about cross-sectional section remaining constant, but since Stress = F/A, if A is constant, should stress be still increasing with the force applied? I know that it is a stress vs strain graph, but strain is extension over length and the bigger the extension, the larger the force from Hooke's law, so the force must be increasing with stress it would seem to me?
 
Tangeton said:
I understand the point you're trying to make about cross-sectional section remaining constant, but since Stress = F/A, if A is constant, should stress be still increasing with the force applied? I know that it is a stress vs strain graph, but strain is extension over length and the bigger the extension, the larger the force from Hooke's law, so the force must be increasing with stress it would seem to me?
But Hooke's Law does not apply after yielding, since the stress strain curve is no longer linear beyond the yield stress ( we're talking steel or aluminum as an example), and thus, increasing strain no longer implies increasing force. Ideally, when you apply an increasing tensile load to a test specimen, the elongation and strain increase as the applied load increases until yield, but then the elongation increases without much increase in the applied load, sort of like silly putty where stretching becomes extensive with no increase in applied load required.
 
  • Like
Likes Tangeton
So I know that electrons are fundamental, there's no 'material' that makes them up, it's like talking about a colour itself rather than a car or a flower. Now protons and neutrons and quarks and whatever other stuff is there fundamentally, I want someone to kind of teach me these, I have a lot of questions that books might not give the answer in the way I understand. Thanks
Back
Top