How to calculate Nusselt number

In summary, the conversation discusses the calculation of Nusselt number for liquid sodium in a pipeline with a length of 3 meters and diameter of 0.3 meters. The heat flux through the outer surface of the pipeline is zero and the temperature on the right and left sides are 573 K and 773 K, respectively. The solution involves free convective heat transfer and the Nusselt number can be calculated using various equations such as the Colburn equation, Dittus-Boelter equation, and Petukhov correlation. The friction factor and Reynolds number also play a role in the calculation. However, the problem needs to be clarified further as there are some conflicting statements about the heat transfer conditions.
  • #1
SeRGeiSarov
2
0
Hello I need to calculate the Nusselt number for liquid sodium in a pipeline. Length of the pipeline is 3 meter. Diameter of the pipeline is 0.3 meter. Heat flux through outer surface of the pipeline is equal zero. Temperature on the right side and left side of the pipeline is 573 K and 773 K, respectively. Solution of the problem is free convective heat transfer.

Nu=[tex]\lambda_{eff}[/tex]/[tex]\lambda[/tex]

[tex]\lambda[/tex] is heat flux coefficient for liquid sodium at 673 K (average temperature)
[tex]\lambda_{eff}[/tex] is effective heat flux coefficient including effect of free convective heat transfer. [tex]\lambda_{eff}[/tex]=Q[tex]\delta[/tex]/S[tex]\Delta[/tex]T

Q is heat flux through surface
[tex]\delta[/tex] is the length
S is cross sectional area of the pipe
[tex]\Delta[/tex]T is temperature difference (200 K)

Which the surface have be used for calculation of Q? (the right side, the left side, the outer surface) How to calculate Nusselt number?

TIA
 
Engineering news on Phys.org
  • #2
Nu=(h*Lc)/k
k is the thermal conductivity
Lc is the length
and i can say that the nusselt number is the ratio of convection and conduction ==>[q(conv)=h*DT]/[q(cond)=(k*DT)/L
 
  • #3
The simplest equation is the Colburn equation
[tex] Nu_D = 0.023 {Re}^{4/5}_D {Pr}^{1/3} [/tex]

The Dittus-Boelter equation is slightly different
[tex] Nu_D = 0.023 {Re}^{4/5}_D {Pr}^{n} [/tex]
Where n is 0.4 for heating and 0.3 for cooling. These equations are valid for 0.7<Pr<160; Re>10,000; L/D > 10.

Another more complex correlation is attributed to Petukhov
[tex] {Nu}_D = \frac{ (f/8){Re}_D {Pr}}{ 1.07 + 12.7(f/8)^{1/2}({Pr}^{2/3} - 1)}[/tex]
Where f is the friction factor. This correlation is good for 0.5<Pr<2000 and 10^4<Re<5x10^6. For smaller Reynolds numbers
[tex] {Nu}_D = \frac{ (f/8)({Re}_D-1000) {Pr}}{ 1.00 + 12.7(f/8)^{1/2}({Pr}^{2/3} - 1)}[/tex]
This is valid for the same Prandlt number, but with Reynolds down to 3000.

For smooth pipes, one should use the following for the friction factor
[tex] f = (0.790 \ln{Re}_D - 1.64)^{-2}[/tex]

For fully developed laminar flows in pipes with a circular cross section
[tex]{Nu}_D = 4.36[/tex] for uniform heating and
[tex]{Nu}_D = 3.66[/tex] for uniform Temperature imposed

All of this was taken from "Introduction to Heat Transfer" by Incropera and DeWitt, 4th edition.
 
  • #4
You may want to restate your problem a little bit.
First of, there is no heat transfer through the outer wall. Does this means the pipe is insulated? Is the pipe heated surounded by insulation? Furthermore, what do you mean with free convection here? is there boyuancy driven flow? All equation given by Minger are for FORCED convection. What do you mean with left side and right side? Entrance and exit of the pipe?

If you know the entrance and exit temperature and flow conditions (Reynolds number) you can simply calculate the average Nu.
 
  • #5
Oh, guess maybe I should have read the post a little better as well. Hoping that he means free convection outside of the pipe.
 
  • #6
jaap de vries said:
You may want to restate your problem a little bit.
First of, there is no heat transfer through the outer wall. Does this means the pipe is insulated? Is the pipe heated surounded by insulation? Furthermore, what do you mean with free convection here? is there boyuancy driven flow? All equation given by Minger are for FORCED convection. What do you mean with left side and right side? Entrance and exit of the pipe?

If you know the entrance and exit temperature and flow conditions (Reynolds number) you can simply calculate the average Nu.

The pipe is insulated. There is boyuancy driven flow. On the left side and the right side only heat flux is set (temperature). Problem is solved into the pipe.
 
  • #7
SeRGeiSarov said:
The pipe is insulated. There is boyuancy driven flow. On the left side and the right side only heat flux is set (temperature). Problem is solved into the pipe.



Hello Guys, I have a very simple situation but I am not an expert so I need a bit of help. I got a simple Aluminium plate with square dimension which I am heating in a room. How will I calculate the Nusselt number for that. I mean I know the simple solution is to use Nu=hL/k but somehow I think it is not that simple, and anybody can give me an idea or reference to find the value of h at room temperature in ambient air?
thanks in advance
 
  • #8
hello all,

how can i calculate Nu number at 1 wall of a room as a function of Rayleigh number floor and ceiling, if i accept the other walls insulated?

Thanks for attention,

nasilbir
 

1. What is the Nusselt number?

The Nusselt number is a dimensionless number that represents the ratio of convective to conductive heat transfer in a fluid. It is used to determine the efficiency of heat transfer in a system.

2. How do you calculate the Nusselt number?

The Nusselt number can be calculated using the equation Nu = (h * L) / k, where h is the convective heat transfer coefficient, L is the characteristic length, and k is the thermal conductivity of the fluid.

3. What is the significance of the Nusselt number?

The Nusselt number is important in determining the efficiency of heat transfer in a system. A higher Nusselt number indicates more efficient heat transfer, while a lower number indicates poorer heat transfer.

4. What are the units of the Nusselt number?

The Nusselt number is a dimensionless quantity, so it does not have any units.

5. What factors affect the Nusselt number?

The Nusselt number is affected by several factors, including the fluid properties (such as viscosity and thermal conductivity), the geometry of the system, and the flow conditions (such as velocity and temperature difference).

Similar threads

  • Mechanical Engineering
Replies
34
Views
4K
Replies
4
Views
1K
  • Engineering and Comp Sci Homework Help
Replies
6
Views
2K
  • Mechanical Engineering
Replies
5
Views
1K
Replies
4
Views
2K
  • Mechanical Engineering
Replies
2
Views
3K
  • Mechanical Engineering
Replies
7
Views
2K
  • Mechanical Engineering
Replies
5
Views
8K
  • Mechanical Engineering
Replies
8
Views
4K
  • Engineering and Comp Sci Homework Help
Replies
2
Views
2K
Back
Top