Rotation of macroscopic magnetization = average (Magnetization current density)

  • #1
LeoJakob
21
1
Thread moved from the technical forums to the schoolwork forums
Homework Statement
rotation of macroscopic magnetization = averege (Magnetization current density )
Relevant Equations
##(\vec{\nabla} \cdot \vec{j}_{\text{mag}}^{(i)}=0##

,## \vec{M}(\vec{r})=\frac{1}{v} \sum_{i=1}^{N} \vec{m}_{i}##

,##\vec{m}_{i}=\frac{1}{2} \int\left(\vec{r}^{\prime}-\vec{R}_{i}\right) \times \vec{j}_{mag}^{(i)}\left(\vec{r}^{\prime}\right) d^{3} \vec{r}^{\prime}##

, ##\vec{\nabla} \times(\vec{A} \times \vec{B})=(\vec{B} \cdot \vec{\nabla}) \vec{A}-\vec{B}(\vec{\nabla} \cdot \vec{A})+\vec{A}(\vec{\nabla} \cdot \vec{B})-(\vec{A} \cdot \vec{\nabla}) \vec{B} ##
In the headline to the question the statement should have been:
rotation of macroscopic magnetization = averege (Magnetization current density )

The Magnetization current densities ##\vec{j}_{\text{mag}}^{(i)}## of individual particles ##i## are stationary ##(\vec{\nabla} \cdot \vec{j}_{\text{mag}}^{(i)}=0##) and generate the magnetic moments
$$
\vec{m}_{i}=\frac{1}{2} \int\left(\vec{r}^{\prime}-\vec{R}_{i}\right) \times \vec{j}_{mag}^{(i)}\left(\vec{r}^{\prime}\right) d^{3} \vec{r}^{\prime}
$$
at the locations##\vec{R}_{i}##. Analogous to the macroscopic electric polarization, introduce the macroscopic magnetization as the average magnetic dipole moment per mesoscopic volume ##v##:
$$
\vec{M}(\vec{r})=\frac{1}{v} \sum_{i=1}^{N} \vec{m}_{i}
$$

Proof:
$$
\vec{\nabla} \times \vec{M}=\overline{\vec{j}_{mag}}
$$

Attempt
$$\begin{array}{l}\vec{\nabla} \times \vec{M}=\vec{\nabla} \times\left(\frac{1}{V} \sum \limits_{i=1}^{N} \vec{m}_{i}\right) \\ =\frac{1}{V} \vec{\nabla} \times\left(\sum \limits_{i=1}^{n} \frac{1}{2} \int\left(\vec{r}^{\prime}-\vec{R}_{i}\right) \times \vec{j}_{\text {mag }}^{(i)}\left(\vec{r}^{\prime}\right) \partial^{3} \vec{r}^{\prime}\right) \\ =\frac{1}{2 V} \sum \limits_{i=1}^{n} \underbrace{\vec{\nabla} \times\left(\left(\overrightarrow{r^{\prime}}-\overrightarrow{R_{i}}\right) \times \overrightarrow{j_{\text {mag }}^{(i)}}\left(\overrightarrow{r^{\prime}}\right)\right)}_{=(i)} d^{3} \vec{r}^{\prime} \\
= ?\end{array}$$

$$
\begin{array}{l}(i)=\left(\vec{j}_{\text {mag }}^{(i)}\left(\vec{r}^{\prime}\right) \cdot \vec{\nabla}\right)\left(\vec{r}^{\prime}-\vec{R}_{i}\right)- \vec{j}_{\text {mag }}^{(i)}\left(\vec{r}^{\prime}\right) \left(\vec{\nabla} \cdot\left(\vec{r}^{\prime}-\vec{R}_{i}\right)\right) \\ +\left(\vec{r}^{\prime}-\vec{R}_{i}\right)(\underbrace{\vec{\nabla} \cdot \vec{j}_{\text {mag }}^{(i)}\left(\vec{r}^{\prime}\right)}_{=0})-\left[\left(\vec{r}^{\prime}-\overrightarrow{R_{i}}\right) \cdot \vec{\nabla}\right] \vec{j}_{\text {mag }}^{(i)}\left(\vec{r}^{\prime}\right)
\\
\\
=\left(\vec{j}_{\text {mag }}^{(i)}\left(\vec{r}^{\prime}\right) \cdot \vec{\nabla}\right)\left(\vec{r}^{\prime}-\vec{R}_{i}\right)- \vec{j}_{\text {mag }}^{(i)}\left(\vec{r}^{\prime}\right) \left(\vec{\nabla} \cdot\left(\vec{r}^{\prime}-\vec{R}_{i}\right)\right) \\
-\left[\left(\vec{r}^{\prime}-\overrightarrow{R_{i}}\right) \cdot \vec{\nabla}\right] \vec{j}_{\text {mag }}^{(i)}\left(\vec{r}^{\prime}\right) \end{array} $$

I don’t have more ideas right now, can someone help me?
 
Last edited:
Physics news on Phys.org
  • #2
LeoJakob said:
The Magnetization current densities ##\vec{j}_{\text{mag}}^{(i)}## of individual particles ##i## are stationary ##(\vec{\nabla} \cdot \vec{j}_{\text{mag}}^{(i)}=0##) and generate the magnetic moments
$$
\vec{m}_{i}=\frac{1}{2} \int\left(\vec{r}^{\prime}-\vec{R}_{i}\right) \times \vec{j}_{mag}^{(i)}\left(\vec{r}^{\prime}\right) d^{3} \vec{r}^{\prime}
$$
at the locations##\vec{R}_{i}##. Analogous to the macroscopic electric polarization, introduce the macroscopic magnetization as the average magnetic dipole moment per mesoscopic volume ##v##:
$$
\vec{M}(\vec{r})=\frac{1}{v} \sum_{i=1}^{N} \vec{m}_{i}
$$

As indicated, ##\vec M (\vec r)## is a function of the position vector ##\vec r## for a point in the medium. So, the right-hand side of the above equation for ##\vec M(\vec r)## must be a function of ##\vec r##. Note, however, that ##\vec m_i## for the magnetization of the ##i^{th}## particle located at ##\vec R_i## does not depend on the vector ##\vec r##.

However, the expression ##\frac 1 v \sum_{i=1}^N \vec m_i## does depend on ##\vec r## because the “mesoscopic” volume ##v## is assumed to be centered on ##\vec r##. The sum is over all particles located in ##v##. So, the sum does depend on ##\vec r## even though ##m_i## for a particular particle does not depend on ##\vec r##.

When forming the curl (“rotation”) of ##\vec M(\vec r)##, the derivative operators are derivatives with respect to the components of ##\vec r##. These derivative operators do not act on ##\vec r’## appearing in the expression for ##\vec m_i##.

The change in ##\vec M(\vec r)## for a small change ##\vec {dr}## in ##\vec r## is due to shifting the location of the volume ##v## by ##\vec {dr}## and performing the sum ##\sum_{i= 1}^N \vec m_i## over the particles in this shifted volume.

So, it’s pretty tricky. The text says “Analogous to the macroscopic electric polarization, introduce the macroscopic magnetizarion…”. Perhaps the textbook has already done a similar calculation for electric polarization ##\vec P(\vec r)## in deriving ##\vec{\nabla} \cdot \vec P(\vec r) = - \rho_{\text {pol}}(\vec r)##, where ##\rho_{\text {pol}}## is the polarization charge density. If so, it might be helpful to study this derivation before tackling the magnetization problem.
 
  • Like
Likes LeoJakob

Similar threads

  • Advanced Physics Homework Help
Replies
3
Views
395
  • Advanced Physics Homework Help
Replies
1
Views
426
  • Advanced Physics Homework Help
Replies
6
Views
311
  • Advanced Physics Homework Help
Replies
1
Views
1K
  • Advanced Physics Homework Help
Replies
12
Views
1K
  • Advanced Physics Homework Help
Replies
11
Views
1K
Replies
1
Views
384
  • Advanced Physics Homework Help
Replies
17
Views
1K
  • Advanced Physics Homework Help
Replies
3
Views
1K
  • Introductory Physics Homework Help
Replies
17
Views
401
Back
Top