Inducing Voltage in a Transformer: How Does It Work?

AI Thread Summary
A changing current in a transformer's primary winding creates a changing magnetic field that induces voltage in the secondary winding, even when the secondary is unloaded and has no current. In real-world transformers, the secondary winding's capacitance allows for charging and discharging during each AC half-cycle, resulting in a small amount of primary current known as magnetizing current. This magnetizing current behaves like an inductor, demonstrating that transformers can be viewed as inductors with additional windings. When a resistive load is connected to the secondary, in-phase currents flow in both the primary and secondary, indicating real energy transfer. Thus, the induced voltage in the secondary occurs independently of any load current.
Elquery
Messages
66
Reaction score
10
TL;DR Summary
A changing current in a transformer primary produces a changing magnetic field, which induces a voltage in the secondary, but if no circuits are closed on the secondary, there's no current in the primary. How is there measurable voltage on the secondary?
A changing current in a transformer primary produces a changing magnetic field, which induces a voltage in the secondary (correct?), but if no circuits are closed on the secondary, there's no current in the secondary (and therefore primary as well). So how is this voltage induced?
 
Engineering news on Phys.org
If the secondary is unloaded, the impedance is infinite in the ideal case, so that a secondary voltage & zero current occur.
In real world transformers, the secondary winding has a capacitance. This capacitance charges & discharges every ac half cycle. The secondary current is not zero, due to charging & discharge action.
 
  • Like
Likes phinds and berkeman
There is always some (often small) amount of primary current in a transformer. We call this the magnetizing current and it is essentially the same as if the transformer primary was a simple inductor. In fact most physics classes are taught with "coupled inductors" as opposed to "transformers". It is important to understand that a transformer is just an inductor with extra windings (the secondaries). You can see more of the details in this older post, although you may find it a bit complex. The point is that every transformer model should have an large inductor (the magnetizing inductance) shunting one of the windings. This models the impact of the magnetic core on the windings, this is the inductor that is coupled to the other windings.
 
Last edited:
  • Like
Likes Charles Link, Babadag, tech99 and 2 others
Elquery said:
A changing current in a transformer primary produces a changing magnetic field, which induces a voltage in the secondary (correct?), but if no circuits are closed on the secondary, there's no current in the secondary (and therefore primary as well). So how is this voltage induced?
The voltage in the secondary is induced independent of any secondary current to a load.

The primary is an inductor, so a reactive current flows that magnetises the core. That reactive current is in quadrature with the primary voltage and represents idle energy circulating in the supply and primary winding, not real power.

If a real resistive load is connected to the secondary, in-phase currents will flow in the secondary and the primary. Those in-phase currents represents real energy being transferred from the supply to the secondary load.
 
  • Like
Likes Babadag, cnh1995 and berkeman
While I was rolling out a shielded cable, a though came to my mind - what happens to the current flow in the cable if there came a short between the wire and the shield in both ends of the cable? For simplicity, lets assume a 1-wire copper wire wrapped in an aluminum shield. The wire and the shield has the same cross section area. There are insulating material between them, and in both ends there is a short between them. My first thought, the total resistance of the cable would be reduced...
Hi all I have some confusion about piezoelectrical sensors combination. If i have three acoustic piezoelectrical sensors (with same receive sensitivity in dB ref V/1uPa) placed at specific distance, these sensors receive acoustic signal from a sound source placed at far field distance (Plane Wave) and from broadside. I receive output of these sensors through individual preamplifiers, add them through hardware like summer circuit adder or in software after digitization and in this way got an...
I am not an electrical engineering student, but a lowly apprentice electrician. I learn both on the job and also take classes for my apprenticeship. I recently wired my first transformer and I understand that the neutral and ground are bonded together in the transformer or in the service. What I don't understand is, if the neutral is a current carrying conductor, which is then bonded to the ground conductor, why does current only flow back to its source and not on the ground path...
Back
Top