Invariants of the stress tensor (von Mises yield criterion)

AI Thread Summary
The discussion centers on the von Mises yield criterion and the confusion surrounding the second stress invariant's sign in two equations. Participants note that the I invariants are derived from the characteristic polynomial of the stress tensor, which can lead to differing sign conventions based on the equation's formulation. Clarification is provided that J2 and I2 should not be confused, emphasizing the importance of distinguishing between them. The equations presented highlight the mathematical relationship between the stress components and their contributions to the invariant. Understanding these nuances is crucial for accurately applying the yield criterion in material science.
balasekar1005
Messages
1
Reaction score
0
TL;DR Summary
I see different versions of the second invariant of the cauchy stress tensor.
Hello all,

I am trying to understand the von Mises yield criterion and stumbled across two equations for the second stress invariant. Although the only difference is a difference in signs (negative and positive), it has been bothering me. Attached are the two versions. Which one is correct and if both are correct, why is there a change in sign?

Thank you,
Bala
 

Attachments

  • wiki.PNG
    wiki.PNG
    297 bytes · Views: 237
  • othersource.PNG
    othersource.PNG
    311 bytes · Views: 240
Engineering news on Phys.org
I have not done theoretical stuff in a long time, so take what I say with a grain of salt ...

The I invariants are the constants of the characteristic polynomial of the stress tensor used to determine the principal stresses so that you can define them to within a sign depending on how you choose to write the equation. What I cannot remember, is if there is a sign convention. Since you are finding both, my guess is that there is not one.

BTW, make sure that you do not confuse J2 with I2.
 
Here's what I've found in one of the books:
$$II_{\sigma}=\frac{1}{2} \left[ tr(\sigma^{2})-(tr \sigma)^2 \right]=- \sigma_{11} \sigma_{22}+ \sigma_{12} \sigma_{21} - \sigma_{11} \sigma_{33} + \sigma_{13} \sigma_{31} - \sigma_{22} \sigma_{33} + \sigma_{23} \sigma_{32}$$
 
How did you find PF?: Via Google search Hi, I have a vessel I 3D printed to investigate single bubble rise. The vessel has a 4 mm gap separated by acrylic panels. This is essentially my viewing chamber where I can record the bubble motion. The vessel is open to atmosphere. The bubble generation mechanism is composed of a syringe pump and glass capillary tube (Internal Diameter of 0.45 mm). I connect a 1/4” air line hose from the syringe to the capillary The bubble is formed at the tip...
Thread 'Physics of Stretch: What pressure does a band apply on a cylinder?'
Scenario 1 (figure 1) A continuous loop of elastic material is stretched around two metal bars. The top bar is attached to a load cell that reads force. The lower bar can be moved downwards to stretch the elastic material. The lower bar is moved downwards until the two bars are 1190mm apart, stretching the elastic material. The bars are 5mm thick, so the total internal loop length is 1200mm (1190mm + 5mm + 5mm). At this level of stretch, the load cell reads 45N tensile force. Key numbers...
I'd like to create a thread with links to 3-D Printer resources, including printers and software package suggestions. My motivations are selfish, as I have a 3-D printed project that I'm working on, and I'd like to buy a simple printer and use low cost software to make the first prototype. There are some previous threads about 3-D printing like this: https://www.physicsforums.com/threads/are-3d-printers-easy-to-use-yet.917489/ but none that address the overall topic (unless I've missed...

Similar threads

Back
Top