Is the Stress in a Twisted Helical Spring Caused by Torsion or Bending?

  • Thread starter Thread starter reterty
  • Start date Start date
  • Tags Tags
    Rod Torsion
AI Thread Summary
The discussion centers on the stress experienced by a twisted helical spring, questioning whether it arises from torsion or bending. It examines the relationship between twisting torque, shear modulus, and torsion constant, leading to a derived equation that contrasts with existing literature. The argument suggests that twisting a helical spring primarily results in bending stress rather than torsional stress. Additionally, it notes that when the spring is compressed along its axis, the wire experiences torsional stress. The conversation highlights the complexity of analyzing stress in helical springs and the need for clarity in derivations.
reterty
Messages
29
Reaction score
2
Let us consider the massless homogeneous helical spring with the infinitesimal wire diameter d and wire length l. We denote the spring radius as R. Now we consider the curvilinear spring section of length dl. We draw radii from the spiral axis to the centers of the end cross-sections of this section. After the twisting deformation the second cross-section rotates relative to the first by angle dφ=Mdl/(GJ), where M is the twisting torque; G is the shear modulus; J is the torsion constant. At this rate second radius rotates relative to the first one by the same angle dφ and second end of the section is shifted along the axis of the spiral by a distance dz=Rdφcosα, where α is the current pitch angle of spring (helix). Then z=Mlcosα/(GJ), where l is the total rod length (we assume that this length remains constant during the torsion process). On the other hand, if the initial pitch angle (before twisting) close to zero, then z=l sinα. As a result, we have: M/(GJ)=sinα/(R cosα). This equation differs from that given in cin literature http://www.manuscriptsystem.com/Journal/articles.aspx?journalid=1108 article"Solving Geometrically Nonlinear Problem on Deformation of a Helical Spring through Variational Methods" (there is M/(GJ)=sinαcosα/R), but I can not find mistake in my derivation. Please help me with this problem
 
Last edited:
Physics news on Phys.org
If you are twisting a helical spring, I believe the stress in the wire is essentially simple bending, not torsion. The wire of a helical spring subjected to compression parallel to its axis is stressed in torsion.
 
I have recently been really interested in the derivation of Hamiltons Principle. On my research I found that with the term ##m \cdot \frac{d}{dt} (\frac{dr}{dt} \cdot \delta r) = 0## (1) one may derivate ##\delta \int (T - V) dt = 0## (2). The derivation itself I understood quiet good, but what I don't understand is where the equation (1) came from, because in my research it was just given and not derived from anywhere. Does anybody know where (1) comes from or why from it the...
Back
Top