Jordan Form & Matrix Exponential: Homework Statement and Solution

T-1AT = \begin{bmatrix} -4 & 0 & 0 & -1\\ 0 & -4 & 0 & 0\\ 0 & 0 & -4 & 1\\ 0 & 0 & 0 & -4 \end{bmatrix} = JYes, I meant the second one. Typo on my part, sorry about that.As for the matrix exponential, you can use the formula ##e^{tJ} = Te^{tA}T^{-1}##. You can compute ##e^{tA}## by diagonalizing A, finding ##e^{tJ}##, and then
  • #1
Kamekui
14
0

Homework Statement



Find the Jordan form and use it to find the matrix exponential.

Homework Equations





The Attempt at a Solution



Let A =\begin{bmatrix}
-3 &-1 &-1 &-1 \\
-1 & -3 & 1 & 1 \\
1 & -1 & -5 & -1 \\
1 & -1 & -1 & -5
\end{bmatrix}

det(A-λI)=λ4+16λ3+96λ2+256λ+256

(λ+4)4
→ λ=-4 (Multiplicity 4)


A+4I=\begin{bmatrix}
1 &-1 &-1 &-1 \\
-1 & 1 & 1 & 1 \\
1 & -1 & -1 & -1 \\
1 & -1 & -1 & -1
\end{bmatrix}

=\begin{bmatrix}
1 &-1 &-1 &-1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix}

\begin{bmatrix}
v1 \\
v2 \\
v3 \\
v4
\end{bmatrix} =
v1\begin{bmatrix}
1 \\
1 \\
0 \\
0
\end{bmatrix}+v2\begin{bmatrix}
1 \\
0 \\
1 \\
0
\end{bmatrix} + v3\begin{bmatrix}
1 \\
0 \\
0 \\
1
\end{bmatrix}



Therefore, the Jordan Normal Form must look like:


J=\begin{bmatrix}
-4 &0 &0 &0 \\
0 & -4 & 0 & 0 \\
0 & 0 & -4 & 1 \\
0 & 0 & 0 & -4
\end{bmatrix}


Consider now that:

JE1=-4E1
JE2=-4E2
JE3=-4E3
JE4=E3-4E4


But this is equivalent to:

AE1=-4E1
AE2=-4E2
AE3=-4E3
AE4=E3-4E4


AE4=E3-4E4→ (A+4I)E4=E3


Now,

ker[(A+4I)2]=0

(A+4I)2E4=E3
0*E4=0

Therefore, E4 can be anything that is Linearly Independent of E1,E2, and E3.

Let E4=\begin{bmatrix}
1 \\
1 \\
1 \\
1
\end{bmatrix}


(A+4I)E4=E3
\begin{bmatrix}
1 &-1 &-1 &-1 \\
-1 & 1 & 1 & 1 \\
1 & -1 & -1 & -1 \\
1 & -1 & -1 & -1
\end{bmatrix}*\begin{bmatrix}
1 \\
1 \\
1 \\
1
\end{bmatrix}

=\begin{bmatrix}
-2 \\
2 \\
-2 \\
-2
\end{bmatrix}

I'm lost after this point
 
Physics news on Phys.org
  • #2
Kamekui said:

Homework Statement



Find the Jordan form and use it to find the matrix exponential.

Homework Equations


The Attempt at a Solution



Let A =\begin{bmatrix}
-3 &-1 &-1 &-1 \\
-1 & -3 & 1 & 1 \\
1 & -1 & -5 & -1 \\
1 & -1 & -1 & -5
\end{bmatrix}

det(A-λI)=λ4+16λ3+96λ2+256λ+256

(λ+4)4
→ λ=-4 (Multiplicity 4)A+4I=\begin{bmatrix}
1 &-1 &-1 &-1 \\
-1 & 1 & 1 & 1 \\
1 & -1 & -1 & -1 \\
1 & -1 & -1 & -1
\end{bmatrix}

=\begin{bmatrix}
1 &-1 &-1 &-1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix}
$$\begin{bmatrix}
1 &-1 &-1 &-1 \\
-1 & 1 & 1 & 1 \\
1 & -1 & -1 & -1 \\
1 & -1 & -1 & -1
\end{bmatrix} \ne
\begin{bmatrix}
1 &-1 &-1 &-1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix}$$ I know what you mean, but don't use an equal sign there. The matrices aren't equal.

Now,

ker[(A+4I)2]=0
This isn't correct. ##(A+4I)^2 = 0##, so the kernel is all of ##\mathbb{R}^4##.

(A+4I)2E4=E3
0*E4=0

Therefore, E4 can be anything that is Linearly Independent of E1,E2, and E3.
This isn't correct either. It's true that ##(A+4I)^2\vec{x}=0## is satisfied by any ##\vec{x}##, but it's not true that the vector will also satisfy ##(A+4I)\vec{x} = \vec{E}_3##.

You found the kernel of A+4I consists of vectors of the form
$$v1\begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix} +
v2\begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix} +
v3\begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$ What you want to do is find a particular linear combination ##\vec{v}## so that ##(A+4I)\vec{x} = \vec{v}## will have a solution. The vector ##\vec{v}## corresponds to what you called E3, and the solution ##\vec{x}##, to E4.
 
  • #3
Ok, I went back and tried this:

Let
E4=
\begin{bmatrix}
0\\
1\\
1\\
0
\end{bmatrix}

Then,

(A+4I)E4=E3
\begin{bmatrix}
1 & -1 & -1 & -1\\
-1 & 1 & 1 & 1\\
1 & -1 & -1 & -1\\
1 & -1 & -1 & -1
\end{bmatrix}*\begin{bmatrix}
0 \\
1 \\
1 \\
0
\end{bmatrix}
=\begin{bmatrix}
-2\\
2 \\
-2 \\
-2
\end{bmatrix}


Form a matrix T such that T-1AT=J


So, T=\begin{bmatrix}
1 & 1 & -2 & 1\\
1 & 0 & 2 & 1\\
0 & 1 & -2 & 1\\
0 & 0 & -2 & 1
\end{bmatrix}

and T-1=\begin{bmatrix}
1 & 0 & -1 & 0\\
0 & 0 & 1 & -1\\
-1/4 & 1/4 & 1/4 & -1/4\\
-1/2 & 1/2 & 1/2 & 1/2
\end{bmatrix}


T-1AT=\begin{bmatrix}
-4 & 0 & 0 & 0\\
0 & -4 & & 0\\
0 & 0 & -4 & 1\\
0 & 0 & 0 & -4
\end{bmatrix}
=J


If this is correct, computing the matrix exponential is easy, if its correct...
 
  • #4
Did you mean
$$T = \begin{bmatrix}
1 & 1 & -2 & 1\\
1 & 0 & 2 & 1\\
0 & 1 & -2 & 1\\
0 & 0 & -2 & 1
\end{bmatrix}$$ or
$$T= \begin{bmatrix}
1 & 1 & -2 & 0\\
1 & 0 & 2 & 1\\
0 & 1 & -2 & 1\\
0 & 0 & -2 & 0
\end{bmatrix}?$$
 

Related to Jordan Form & Matrix Exponential: Homework Statement and Solution

1. What is a Jordan form?

A Jordan form is a special type of matrix that is used to represent a linear transformation. It is made up of blocks of numbers called Jordan blocks, which have a particular form that makes them easy to analyze.

2. How is a Jordan form useful in linear algebra?

A Jordan form is useful because it allows us to understand the behavior of a linear transformation in a simpler way. It can reveal important characteristics, such as eigenvalues and eigenvectors, that are crucial in many applications of linear algebra.

3. What is the significance of the matrix exponential?

The matrix exponential is a function that takes a square matrix as its input and produces another matrix as its output. It is important because it allows us to solve systems of differential equations and perform other calculations involving matrices in a more efficient manner.

4. How are Jordan forms and the matrix exponential related?

The Jordan form of a matrix can be used to calculate its matrix exponential. This is because the Jordan form has a simple structure that makes it easier to calculate the exponential of the corresponding matrix.

5. How can I solve homework problems involving Jordan forms and matrix exponential?

To solve homework problems involving Jordan forms and matrix exponential, it is important to have a good understanding of the concepts and their applications. It is also helpful to practice solving problems and seek help from your instructor or classmates if needed.

Similar threads

  • Calculus and Beyond Homework Help
Replies
8
Views
2K
  • Calculus and Beyond Homework Help
Replies
3
Views
2K
  • Calculus and Beyond Homework Help
Replies
1
Views
2K
  • Calculus and Beyond Homework Help
Replies
2
Views
2K
  • Calculus and Beyond Homework Help
Replies
2
Views
3K
  • Calculus and Beyond Homework Help
Replies
1
Views
1K
  • Linear and Abstract Algebra
Replies
7
Views
2K
  • Calculus and Beyond Homework Help
Replies
4
Views
2K
  • Calculus and Beyond Homework Help
Replies
5
Views
2K
  • Calculus and Beyond Homework Help
Replies
7
Views
3K
Back
Top