[Linear Algebra] Kernel and range

R}##. Which is it?In summary, we are given a function T that maps polynomials of a degree at most 2 with real coefficients to ℝ by evaluating the polynomial at 2 and subtracting it from the value at 1. We are asked to find a non-zero element of the kernel of T, which turns out to be any polynomial of the form ##p(t) = at^2 + bt + c## where ##a = -3c##. The range of T is a one-dimensional subspace of ℝ and can be described as the set of all real numbers that can be mapped onto by T
  • #1
member 545369

Homework Statement


Let P2 be the vector space of all polynomials of a degree at most 2 with real coefficients. Let T: P2→ℝ be the functioned defined by:

##T(p(t)) = p(2) - p(1)##

a) Find a non-zero element of the Kernel of T. (I think I figured this one out, but I'm not too sure).
b) Find a specific element of p(t) for which T(p(t)) = π. Describe the image of T as an explicit subset of ℝ. ("Image" and "Range" mean the same.)

Homework Equations


##p(t) = a_0 + a_1t + a_2t^2##

The Attempt at a Solution


[/B]
a) What I understood by the "non-zero element of ker(T)" part of the question was that they didn't want me to just write f(x) = 0. So, this is what I wrote down:

##ker(T) = \{f(x) ∈ P^2 : f(2) = f(1)\}##

b) I'll write down my attempt at a solution:

If we're look for a ##p(t)## such that ##T(p(t)) = π##, then we're going to need an equation that follows the requirements of ##p(2) - p(1) = π##. I was thinking solving the following linear system:

##a_0 + 2a_1 + 4a_2t = π + 2##
##a_0 + a_1 + a_2 = 2##

But I feel like I'm overcomplicating things, because the margin given to me in this question doesn't permit the space required to solve this system of linear equations. There must be a clever way of doing this, no? I was thinking about substituting ##a_0 = 0##, since I was asked for a specific solution but I don't know… It seems as if I'm over-complicating things.
 
Physics news on Phys.org
  • #2
talrefae said:

Homework Statement


Let P2 be the vector space of all polynomials of a degree at most 2 with real coefficients. Let T: P2→ℝ be the functioned defined by:

##T(p(t)) = p(2) - p(1)##

a) Find a non-zero element of the Kernel of T. (I think I figured this one out, but I'm not too sure).
b) Find a specific element of p(t) for which T(p(t)) = π. Describe the image of T as an explicit subset of ℝ. ("Image" and "Range" mean the same.)

Homework Equations


##p(t) = a_0 + a_1t + a_2t^2##

The Attempt at a Solution


[/B]
a) What I understood by the "non-zero element of ker(T)" part of the question was that they didn't want me to just write f(x) = 0. So, this is what I wrote down:

##ker(T) = \{f(x) ∈ P^2 : f(2) = f(1)\}##

b) I'll write down my attempt at a solution:

If we're look for a ##p(t)## such that ##T(p(t)) = π##, then we're going to need an equation that follows the requirements of ##p(2) - p(1) = π##. I was thinking solving the following linear system:

##a_0 + 2a_1 + 4a_2t = π + 2##
##a_0 + a_1 + a_2 = 2##

But I feel like I'm overcomplicating things, because the margin given to me in this question doesn't permit the space required to solve this system of linear equations. There must be a clever way of doing this, no? I was thinking about substituting ##a_0 = 0##, since I was asked for a specific solution but I don't know… It seems as if I'm over-complicating things.

You shouldn't switch between notations, like ##P_2## and ##P^2##.
With respect to a): I understood it as to give an example of such a vector ##f##. So which polynomial ##f(t) \neq 0## would satisfy ##f(2) = f(1)##?
It might help to write the conditions on kernel and range in terms of your unknowns: ##a_0 \, , \, a_1\, , \, a_2 \,.##

As to b). The same advice here. What is ##T(p(t))## written out? If you do so, it should be easy to find values, such that ##T(p(t)) = \pi.##
(And you have a "t" too many in your equations.)
 
  • #3
Hint for part (2): What is T(p) for p(t) = at?
 
  • #4
talrefae said:

Homework Statement



a) Find a non-zero element of the Kernel of T. (I think I figured this one out, but I'm not too sure).

The Attempt at a Solution


[/B]
a) What I understood by the "non-zero element of ker(T)" part of the question was that they didn't want me to just write f(x) = 0. So, this is what I wrote down:

##ker(T) = \{f(x) ∈ P^2 : f(2) = f(1)\}##
ker(T) is a set, which is what you wrote down. The question asks you to find a non-zero element of this set.

By the way, note that the term is spelled kernel; you misspelled it (with an a) in the thread title. I corrected it.
 
  • #5
fresh_42 said:
You shouldn't switch between notations, like ##P_2## and ##P^2##.
With respect to a): I understood it as to give an example of such a vector ##f##. So which polynomial ##f(t) \neq 0## would satisfy ##f(2) = f(1)##?
It might help to write the conditions on kernel and range in terms of your unknowns: ##a_0 \, , \, a_1\, , \, a_2 \,.##

As to b). The same advice here. What is ##T(p(t))## written out? If you do so, it should be easy to find values, such that ##T(p(t)) = \pi.##
(And you have a "t" too many in your equations.)

Excuse the typos… So if f(2) = f(1), then: ##a_0 + a_1 + a_2 = a_0 + 2a_1 + 4a_2##… Cancel out the ##a_0##s, and you'd get: ##a_1 + a_2 = 2a_1 + 4a_2##

With a little bit of isolation, you'd get:
##a_1 = 2a_1##
##a_2 = 4a_2##

So, ##ker T= \{f(x) ∈ P_2 : a_1 = 2a_1; a_2 = 4a_2; a_0 = a_0\}## ?

EDIT: Forgot to add the fact that ##a_0 = a_0##
 
  • #6
talrefae said:
Excuse the typos… So if f(2) = f(1), then: ##a_0 + a_1 + a_2 = a_0 + 2a_1 + 4a_2##… Cancel out the ##a_0##s, and you'd get: ##a_1 + a_2 = 2a_1 + 4a_2##

With a little bit of isolation, you'd get:
##a_1 = 2a_1##
##a_2 = 4a_2##

So, ##ker T= \{f(x) ∈ P_2 : a_1 = 2a_1; a_2 = 4a_2\}## ?

EDIT: Forgot to add the fact that ##a_0 = a_0##
You must not separate the ##a_i## because your codomain ##\mathbb{R}## is one-dimensional. Thus you can only say ##3a_2 + a_1 = 0## for polynomials ##p(t) = a_2 t^2 +a_1t +a_0 \in \ker(T)##. With that you can easily find a ##p(t) \in \ker(T) - \{0\}##.
The range can be treated similar.
 
  • #7
pasmith said:
Hint for part (2): What is T(p) for p(t) = at?

Ok so ##T(p(t)) = p(2) - p(1)## and if we allow ##p(t) = at## then: ##T(p(t)) = 2a - a## If we want it to equal π, then we would set ##2a - a = π##. Obviously, ##a = π## in this example.

I'm just going to type up my attempt at extending what you said up to the actual question:

##T(p(t)) = 4a_2 + 2a_1 + a_0 - a_2 - a_1 - a_0 = 3a_2 + a_1 = π##

So, ##img T= \{f(x) ∈ P_2 : 3a_2 + a_1 = π\}##?
 
  • #8
fresh_42 said:
You must not separate the ##a_i## because your codomain ##\mathbb{R}## is one-dimensional. Thus you can only say ##3a_2 + a_1 = 0## for polynomials ##p(t) = a_2 t^2 +a_1t +a_0 \in \ker(T)##. With that you can easily find a ##p(t) \in \ker(T) - \{0\}##.
The range can be treated similar.

I'm sorry, I don't understand what you mean (we haven't taken codomain.) After solving the image part (hopefully I did so correctly?) I can understand where I took a weird route in isolating the variables, but why isn't that a valid move? Anyway, here is how I'd solve it using the method that (I think) you're describing:

##4a_2 + 2a_1 + a_0 = a_0 + a_1 + a_2##
##3a_2 - a_1 = 0##

Thus: ##ker T = \{f(x) ∈ P_2 : 3a_2 - a_1 = 0\}##
 
  • #9
talrefae said:
So, ## img \; T=\{f(x)∈P_2:3a_2+a_1=π\}##
No. ##img \; T## denotes the entire image, range of ##T##, not only the ones which end up in ##\pi##. It is not a set of polynomials anymore since you evaluated them at points ##2## and ##1## and got a real number out of it. So the image is a set of real numbers.
Which are the real numbers, that can be written as ## f(2) - f(1) = 3a_2 + a_1##?
Are there real numbers which can't be written this way?

For the example with ##\pi## you have to find numbers ##a_2## and ##a_1## such that ##3a_2 + a_1 = \pi##.
pasmith's hint meant: you can choose ##a_2=0## and only bother with ##a=a_1##.
talrefae said:
##4a2+2a1+a0=a0+a1+a2##
##3a2−a1=0##

Thus: ##\ker T=\{f(x)∈P_2:3a2−a1=0\}##
It has to be ##+a_1##, but yes. And it's better to say what the ##a_i## mean in this context, so
##ker \, T = \{ f(x) \in P_2 : f(x) = a_2x^2 + a_1 x + a_0 \wedge 3a_2 +a_1 = 0\}##

codomain is the english term for the set which you map to. In your case ##\mathbb{R}##.
 
  • #10
fresh_42 said:
No. ##img \; T## denotes the entire image, range of ##T##, not only the ones which end up in ##\pi##. It is not a set of polynomials anymore since you evaluated them at points ##2## and ##1## and got a real number out of it. So the image is a set of real numbers.
Which are the real numbers, that can be written as ## f(2) - f(1) = 3a_2 + a_1##?
Are there real numbers which can't be written this way?

For the example with ##\pi## you have to find numbers ##a_2## and ##a_1## such that ##3a_2 + a_1 = \pi##.
pasmith's hint meant: you can choose ##a_2=0## and only bother with ##a=a_1##.
It has to be ##+a_1##, but yes. And it's better to say what the ##a_i## mean in this context, so
##ker \, T = \{ f(x) \in P_2 : f(x) = a_2x^2 + a_1 x + a_0 \wedge 3a_2 +a_1 = 0\}##

codomain is the english term for the set which you map to. In your case ##\mathbb{R}##.
Aaah! Silly me, of course the img isn't what I stated! So since the question is asking for a specific element, I just need to formulate a polynomial… right? So I'll just let ##a_2 = π## and ##a_1 = -2π##. So, the specific element would be: ##πt^2 - 2πt = p(t)##

And yeah the minus was an accident in the kernel. thanks for the help, I think I got it!
 
  • Like
Likes fresh_42

What is the kernel of a linear transformation?

The kernel, also known as the null space, of a linear transformation is the set of all vectors in the domain that are mapped to the zero vector in the codomain. In other words, it is the set of all input vectors that result in an output of zero.

What is the range of a linear transformation?

The range, also known as the image, of a linear transformation is the set of all possible output values that can be obtained by applying the transformation to the input vectors. In other words, it is the set of all output vectors that can be reached from the input vectors.

How do you find the kernel of a linear transformation?

To find the kernel of a linear transformation, you can set up a system of equations using the transformation's matrix representation. Then, use row reduction techniques to solve the system and find the values of the variables that result in a zero vector. These values will make up the kernel of the transformation.

How do you find the range of a linear transformation?

To find the range of a linear transformation, you can again use the transformation's matrix representation to set up a system of equations. This time, you will solve for the output variables instead of the input variables. The set of all possible solutions will make up the range of the transformation.

What is the importance of the kernel and range in linear algebra?

The kernel and range are important concepts in linear algebra as they provide insight into the behavior of a linear transformation. The kernel can help us understand which input vectors are not affected by the transformation, while the range tells us all the possible outputs that can be obtained. These concepts are also useful in solving systems of linear equations and in understanding the linear independence of vectors.

Similar threads

  • Calculus and Beyond Homework Help
Replies
24
Views
809
  • Calculus and Beyond Homework Help
Replies
3
Views
575
  • Calculus and Beyond Homework Help
Replies
9
Views
1K
  • Calculus and Beyond Homework Help
Replies
1
Views
463
  • Calculus and Beyond Homework Help
Replies
8
Views
626
  • Calculus and Beyond Homework Help
Replies
1
Views
916
  • Calculus and Beyond Homework Help
Replies
0
Views
454
  • Calculus and Beyond Homework Help
Replies
15
Views
1K
  • Calculus and Beyond Homework Help
Replies
11
Views
1K
  • Calculus and Beyond Homework Help
Replies
5
Views
1K
Back
Top