Lorentz boost generator commutator

  • #1
han
2
0
Homework Statement
Show that ##[\epsilon^{\mu\nu\rho\sigma} M_{\mu \nu}M_{\rho\sigma},M_{\alpha\beta}]=0## where ##M_{\mu\nu}## is a Lorentz boost generator
Relevant Equations
The commutation relation of ##M_{\mu\nu}## is given: $$[M_{\rho \sigma},M_{\alpha\beta}]=i(g_{\rho\beta}M_{\sigma\alpha}+g_{\sigma\alpha}M_{\rho\beta}-g_{\rho\alpha}M_{\sigma\beta}-g_{\sigma\beta}M_{\rho\alpha}).$$
Using above formula, I could calculate the given commutator.
$$
[\epsilon^{\mu\nu\rho\sigma} M_{\mu \nu}M_{\rho\sigma},M_{\alpha\beta}]=i\epsilon^{\mu\nu\rho\sigma}(M_{\mu \nu}[M_{\rho\sigma},M_{\alpha\beta}]+[M_{\rho\sigma},M_{\alpha\beta}]M_{\mu \nu})
$$
(because ##\epsilon^{\mu\nu\rho\sigma}=\epsilon^{\rho\sigma\mu\nu}##, ##(\mu\nu)\leftrightarrow(\rho\sigma)## preserves the result in the 2nd term)
$$
=i\epsilon^{\mu\nu\rho\sigma}(g_{\rho\beta}(M_{\mu\nu}M_{\sigma\alpha}+M_{\sigma\alpha}M_{\mu\nu})+g_{\sigma\alpha}(M_{\mu\nu}M_{\rho\beta}+M_{\rho\beta}M_{\mu\nu})-g_{\rho\alpha}(M_{\mu\nu}M_{\sigma\beta}+M_{\sigma\beta}M_{\mu\nu})-g_{\sigma\beta}(M_{\mu\nu}M_{\rho\alpha}+M_{\rho\alpha}M_{\mu\nu}))
$$

And my calculation stuck here. I could not find any clue that the terms in above formula cancel each other.

I personally checked that for a specific example like taking ##\alpha=1, \beta=2##, the commutator is indeed zero.

It feels like any sign in the 3rd or 4th term is miscalculated and symmetricity in ##\rho## and ##\sigma## combines with the antisymmetric tensor and give the result zero, but I could not find where did I make a mistake on the signs.

Additionally, the term ##\epsilon^{\mu\nu\rho\sigma} M_{\mu \nu}M_{\rho\sigma}## is not explicity zero for example on spinor, where ##M_{\mu \nu}=\frac{i}{4}[\gamma^{\mu},\gamma^{\nu}]##, you can check that the given expression is proportional to ##\gamma^5##.

Edit: I found out by directly calculating that $$
\epsilon^{\mu\nu\rho\sigma}g_{\rho\beta}(M_{\mu\nu}M_{\sigma\alpha}+M_{\sigma\alpha}M_{\mu\nu})$$
term itself is already zero. Again for example when ##\alpha=1,\beta=2## case,
$$
\begin{align}
\epsilon^{\mu\nu\rho\sigma}g_{\rho 2}(M_{\mu\nu}M_{\sigma 1}+M_{\sigma 1}M_{\mu\nu})\\ \nonumber
&=\epsilon^{\mu\nu 23}g_{22}(M_{\mu\nu}M_{31}+M_{31}M_{\mu\nu})+\epsilon^{\mu\nu 20}g_{22}(M_{\mu\nu}M_{01}+M_{01}M_{\mu\nu})\\ \nonumber
&=\epsilon^{0123}g_{22}(M_{01}M_{31}+M_{31}M_{01})+\epsilon^{1320}g_{22}(M_{13}M_{01}+M_{01}M_{13})\\ \nonumber
&=-(M_{01}M_{31}+M_{31}M_{01})+(M_{31}M_{01}+M_{01}M_{31})=0 \nonumber
\end{align}
$$
(Using ##g_{00}=+1, g_{11}=g_{22}=g_{33}=-1## convention)
So it's enough to show that the form ##\epsilon^{\mu\nu\rho\sigma}g_{\rho\beta}(M_{\mu\nu}M_{\sigma\alpha}+M_{\sigma\alpha}M_{\mu\nu})## is zero. But I have no clue how to show this formula is zero with algebraic steps, like switching indicies and cancel the terms out.
 
Last edited:
Physics news on Phys.org
  • #2
han said:
[....]

Using above formula, I could calculate the given commutator.
$$
[\epsilon^{\mu\nu\rho\sigma} M_{\mu \nu}M_{\rho\sigma},M_{\alpha\beta}]=i\epsilon^{\mu\nu\rho\sigma}(M_{\mu \nu}[M_{\rho\sigma},M_{\alpha\beta}]+[M_{\rho\sigma},M_{\alpha\beta}]M_{\mu \nu})
$$
I believe this should read...
$$
[\epsilon^{\mu\nu\rho\sigma} M_{\mu \nu}M_{\rho\sigma},M_{\alpha\beta}]=i\epsilon^{\mu\nu\rho\sigma}(M_{\mu \nu}[M_{\rho\sigma},M_{\alpha\beta}]+[M_{\mu\nu},M_{\alpha\beta}]M_{\rho \sigma})
$$
Lie brackets obey a Leibniz rule: [AB,C] = A[B,C]+[A,C]B.
In detail: [AB,C]=ABC-CAB = ABC-ACB+ACB-CAB.
 
  • Like
Likes vanhees71
  • #3
jambaugh said:
I believe this should read...
$$
[\epsilon^{\mu\nu\rho\sigma} M_{\mu \nu}M_{\rho\sigma},M_{\alpha\beta}]=i\epsilon^{\mu\nu\rho\sigma}(M_{\mu \nu}[M_{\rho\sigma},M_{\alpha\beta}]+[M_{\mu\nu},M_{\alpha\beta}]M_{\rho \sigma})
$$
Lie brackets obey a Leibniz rule: [AB,C] = A[B,C]+[A,C]B.
In detail: [AB,C]=ABC-CAB = ABC-ACB+ACB-CAB.
You can check that
$$
[\epsilon^{\mu\nu\rho\sigma} M_{\mu \nu}M_{\rho\sigma},M_{\alpha\beta}]=\epsilon^{\mu\nu\rho\sigma}(M_{\mu \nu}[M_{\rho\sigma},M_{\alpha\beta}]+[M_{\mu\nu},M_{\alpha\beta}]M_{\rho \sigma})=\epsilon^{\mu\nu\rho\sigma}(M_{\mu \nu}[M_{\rho\sigma},M_{\alpha\beta}]+[M_{\rho\sigma},M_{\alpha\beta}]M_{\mu \nu})
$$

Because
$$
\epsilon^{\mu\nu\rho\sigma}[M_{\mu\nu},M_{\alpha\beta}]M_{\rho \sigma})=\epsilon^{\rho\sigma\mu\nu}[M_{\rho \sigma},M_{\alpha\beta}]M_{\mu\nu})=\epsilon^{\mu\nu\rho\sigma}[M_{\rho \sigma},M_{\alpha\beta}]M_{\mu\nu})
$$
##\mu\nu\rho\sigma## and ##\rho\sigma\mu\nu## both are even permutations.
 

1. What is a Lorentz boost generator commutator?

A Lorentz boost generator commutator is a mathematical expression that describes how the generators of Lorentz boosts, which are transformations that mix space and time coordinates, behave when they are multiplied together in different orders.

2. Why is the commutator of Lorentz boost generators important?

The commutator of Lorentz boost generators is important because it helps us understand the structure of spacetime and the symmetries that govern it. It also plays a crucial role in the development of relativistic theories, such as special relativity and quantum field theory.

3. How is the commutator of Lorentz boost generators calculated?

The commutator of Lorentz boost generators can be calculated using the Lie bracket, which is a mathematical operation that describes the difference between two operators when they are applied in different orders. In the case of Lorentz boost generators, the commutator can be expressed as the difference between the products of the generators in two different orders.

4. What are the properties of the commutator of Lorentz boost generators?

The commutator of Lorentz boost generators satisfies certain algebraic properties, such as antisymmetry and linearity. It also obeys a specific algebraic structure known as the Lorentz algebra, which defines how the generators of Lorentz boosts interact with each other.

5. How does the commutator of Lorentz boost generators relate to physical phenomena?

The commutator of Lorentz boost generators is closely related to physical phenomena that involve relativistic effects, such as time dilation, length contraction, and relativistic particle interactions. By studying the commutator, physicists can gain insights into the underlying symmetries of spacetime and develop more accurate models of the universe.

Similar threads

  • Advanced Physics Homework Help
Replies
3
Views
1K
  • Advanced Physics Homework Help
Replies
1
Views
2K
  • Advanced Physics Homework Help
Replies
22
Views
3K
  • Advanced Physics Homework Help
Replies
1
Views
2K
  • Advanced Physics Homework Help
Replies
1
Views
1K
  • Advanced Physics Homework Help
Replies
2
Views
1K
  • Advanced Physics Homework Help
Replies
2
Views
2K
  • Advanced Physics Homework Help
Replies
5
Views
2K
  • Advanced Physics Homework Help
Replies
10
Views
2K
  • Advanced Physics Homework Help
Replies
11
Views
2K
Back
Top