Lorentz transformation of electric and magnetic fields

Anyway, the point is that the transformation from unprimed to primed coordinates is given by ##x^{\mu'} = (\Lambda^{\mu'})_{\nu} x^{\nu}##, and that the transformation from primed to unprimed is given by ##x^{\rho} = (\Lambda^{\rho})_{\mu'} x^{\mu'}##. But since the indices are (implicitly) summed over, we can just swap the indices, giving ##x^{\mu'} = (\Lambda^{\mu'})_{\nu} x^{\nu}## and ##x^{\rho} = (\Lambda^{\rho})_{\mu'} x^{\mu
  • #1
spaghetti3451
1,344
33

Homework Statement



Using the tensor transformation law applied to ##F_{\mu\nu}##, show how the electric and magnetic field ##3##-vectors ##\textbf{E}## and ##\textbf{B}## transform under

(a) a rotation about the ##y##-axis,
(b) a boost along the ##z##-axis.

Homework Equations



The Attempt at a Solution



The tensor transformation law applied to ##F_{\mu\nu}## is the following:

##F_{\mu'\nu'}=\frac{\partial x^{\mu}}{\partial x^{\mu'}}\frac{\partial x^{\nu}}{\partial x^{\nu'}}F_{\mu\nu}={{(\Lambda^{-1})}_{\mu'}}^{\mu}{{(\Lambda^{-1})}_{\nu'}}^{\nu}F_{\mu\nu}={\Lambda^{\mu}}_{\mu'}{\Lambda^{\nu}}_{\nu'}F_{\mu\nu}##

(a) A rotation of angle ##\theta## about the ##y##-axis in the counterclockwise sense from the unprimed frame to the primed frame is specified by

##{\Lambda^{\mu'}}_{\mu}=
\left( \begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \text{cos}\ \theta & 0 & -\text{sin}\ \theta \\
0 & 0 & 1 & 0 \\
0 & \text{sin}\ \theta & 0 & \text{cos}\ \theta \end{array} \right)
##

Therefore, the same transformation of a rotation of angle ##\theta## about the ##y##-axis in the clockwise sense from the primed frame to the unprimed frame is given by

##{\Lambda^{\mu}}_{\mu'}=
\left( \begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \text{cos}\ (-\theta) & 0 & -\text{sin}\ (-\theta) \\
0 & 0 & 1 & 0 \\
0 & \text{sin}\ (-\theta) & 0 & \text{cos}\ (-\theta) \end{array} \right)=
\left( \begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \text{cos}\ \theta & 0 & \text{sin}\ \theta \\
0 & 0 & 1 & 0 \\
0 & -\text{sin}\ \theta & 0 & \text{cos}\ \theta \end{array} \right)
##

Have I made a mistake?
 
Physics news on Phys.org
  • #2
Looks good.
 
  • #3
Thanks!

So, we have ##F_{\mu'\nu'}={\Lambda^{\mu}}_{\mu'}{\Lambda^{\nu}}_{\nu'}F_{\mu\nu}##
##=
\left( \begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \text{cos}\ \theta & 0 & \text{sin}\ \theta \\
0 & 0 & 1 & 0 \\
0 & -\text{sin}\ \theta & 0 & \text{cos}\ \theta \end{array} \right)
\left( \begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \text{cos}\ \theta & 0 & \text{sin}\ \theta \\
0 & 0 & 1 & 0 \\
0 & -\text{sin}\ \theta & 0 & \text{cos}\ \theta \end{array} \right)
\left( \begin{array}{cccc}
0 & -E_{1} & -E_{2} & -E_{3} \\
E_{1} & 0 & -B_{3} & B_{2} \\
E_{2} & B_{3} & 0 & -B_{1} \\
E_{3} & -B_{2} & B_{1} & 0 \end{array} \right)=
\left( \begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \text{cos}^{2}\ \theta - \text{sin}^{2}\ \theta & 0 & 2\ \text{sin}\ \theta\ \text{cos}\ \theta \\
0 & 0 & 1 & 0 \\
0 & -2\ \text{sin}\ \theta\ \text{cos}\ \theta & 0 & \text{cos}^{2}\ \theta - \text{sin}^{2}\ \theta \end{array} \right)
\left( \begin{array}{cccc}
0 & -E_{1} & -E_{2} & -E_{3} \\
E_{1} & 0 & -B_{3} & B_{2} \\
E_{2} & B_{3} & 0 & -B_{1} \\
E_{3} & -B_{2} & B_{1} & 0 \end{array} \right)=
\left( \begin{array}{cccc}
1 & -E_{1} & -E_{2} & -E_{3} \\
E_{1}(\text{cos}^{2}\ \theta - \text{sin}^{2}\ \theta)+E_{3}(2\ \text{sin}\ \theta\ \text{cos}\ \theta) & -2\ \text{sin}\ \theta\ \text{cos}\ \theta\ B_{2} & -B_{3}(\text{cos}^{2}\ \theta - \text{sin}^{2}\ \theta)+(2\ \text{sin}\ \theta\ \text{cos}\ \theta)B_{1} & (\text{cos}^{2}\ \theta - \text{sin}^{2}\ \theta)B_{2} \\
E_{2} & B_{3} & 0 & -B_{1} \\
E_{3}(\text{cos}^{2}\ \theta - \text{sin}^{2}\ \theta)-E_{1}(2\ \text{sin}\ \theta\ \text{cos}\ \theta) & -(\text{cos}^{2}\ \theta - \text{sin}^{2}\ \theta)B_{2} & B_{1}(\text{cos}^{2}\ \theta - \text{sin}^{2}\ \theta)+B_{3}(2\ \text{sin}\ \theta\ \text{cos}\ \theta) & -2\ \text{sin}\ \theta\ \text{cos}\ \theta\ B_{2} \end{array} \right).##

I'm not really sure how to figure out the transformation of the ##\textbf{E}## and ##\textbf{B}## fields since the transformed electromagnetic strength tensor looks really weird. For example, there are non-zero-valued entries in ##F_{\mu'\nu'}## for zero-valued corresponding entries in ##F_{\mu\nu}##.
 
  • #4
failexam said:
So, we have ##F_{\mu'\nu'}={\Lambda^{\mu}}_{\mu'}{\Lambda^{\nu}}_{\nu'}F_{\mu\nu}##
Due to the placement of the indices, this does not express the matrix multiplication ##\Lambda \Lambda F##.
 
  • #5
Alright, then!

##F_{\mu'\nu'}={\Lambda^{\mu}}_{\mu'}{\Lambda^{\nu}}_{\nu'}F_{\mu\nu}={\Lambda^{\mu}}_{\mu'}F_{\mu\nu}{\Lambda^{\nu}}_{\nu'}={(\Lambda^{-1})_{\mu'}}^{\mu}F_{\mu\nu}{\Lambda^{\nu}}_{\nu'}##.

But, ##{(\Lambda^{-1})_{\mu'}}^{\mu}={\Lambda^{\mu}}_{\mu'}## is the same matrix as ##{\Lambda^{\nu}}_{\nu'}##, which is given by ##\Lambda^{-1}=
\left( \begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \text{cos}\ \theta & 0 & \text{sin}\ \theta \\
0 & 0 & 1 & 0 \\
0 & -\text{sin}\ \theta & 0 & \text{cos}\ \theta \end{array} \right)##.

So, ##F_{\mu'\nu'}={\Lambda^{\mu}}_{\mu'}{\Lambda^{\nu}}_{\nu'}F_{\mu\nu}## becomes ##\Lambda^{-1}F\Lambda^{-1}##?
 
  • #6
##F_{\mu'\nu'}={\Lambda^{\mu}}_{\mu'}{\Lambda^{\nu}}_{\nu'}F_{\mu\nu}## becomes ##\Lambda^{-1}F\Lambda^{-1}##?
yes [edit: no, I believe one of the ##\Lambda##'s should not be an inverse.]
 
Last edited:
  • #7
Thanks!

On a different note, I've confused myself now over the correctness of the tensor transformation law

##F_{\mu'\nu'}=\frac{\partial x^{\mu}}{\partial x^{\mu'}}\frac{\partial x^{\nu}}{\partial x^{\nu'}}F_{\mu\nu}={{(\Lambda^{-1})}_{\mu'}}^{\mu}{{(\Lambda^{-1})}_{\nu'}}^{\nu}F_{\mu\nu}={\Lambda^{\mu}}_{\mu'}{\Lambda^{\nu}}_{\nu'}F_{\mu\nu}##.Consider the following:

##x^{\mu'}={\Lambda^{\mu'}}_{\nu}x^{\nu} \implies {(\Lambda^{-1})^{\rho}}_{\mu'}x^{\mu'}={(\Lambda^{-1})^{\rho}}_{\mu'}{\Lambda^{\mu'}}_{\nu}x^{\nu} \implies x^{\rho}={(\Lambda^{-1})^{\rho}}_{\mu'}x^{\mu'}##

so that

##\frac{\partial x^{\mu}}{\partial x^{\mu'}}={(\Lambda^{-1})^{\mu}}_{\mu'}##.

This contradicts with the order of the indices in my tensor transformation law. Where have I gone wrong exactly?
 
  • #8
failexam said:
Consider the following:

##x^{\mu'}={\Lambda^{\mu'}}_{\nu}x^{\nu} \implies {(\Lambda^{-1})^{\rho}}_{\mu'}x^{\mu'}={(\Lambda^{-1})^{\rho}}_{\mu'}{\Lambda^{\mu'}}_{\nu}x^{\nu} \implies x^{\rho}={(\Lambda^{-1})^{\rho}}_{\mu'}x^{\mu'}##
[tex]{(\Lambda^{-1})^{\rho}}_{\mu'}x^{\mu'} \neq x^{\rho}[/tex]
In fact, I would dispense with the use of [itex]\Lambda^{-1}[/itex] altogether - the inverse can be succinctly obtained just by swapping the upper and lower (primed and unprimed) indices.
 
  • #9
Fightfish said:
[tex]{(\Lambda^{-1})^{\rho}}_{\mu'}x^{\mu'} \neq x^{\rho}[/tex]
In fact, I would dispense with the use of [itex]\Lambda^{-1}[/itex] altogether - the inverse can be succinctly obtained just by swapping the upper and lower (primed and unprimed) indices.

Since ##{(\Lambda)^{\rho}}_{\mu'}## is the Lorentz transformation from the unprimed to the primed coordinates, does ##{(\Lambda^{-1})^{\rho}}_{\mu'}## represent the Lorentz transformation from the primed to the unprimed coordinates?Also, how may I derive the relation ##\frac{\partial x^{\mu}}{\partial x^{\mu'}}={(\Lambda^{-1})_{\mu'}}^{\mu}## and then show that ##{(\Lambda^{-1})_{\mu'}}^{\mu}={(\Lambda)^{\mu}}_{\mu'}##?
 
  • #10
failexam said:
and then show that ##{(\Lambda^{-1})_{\mu'}}^{\mu}={(\Lambda)^{\mu}}_{\mu'}##?
This is very strange notation - why should they be equal? Usually when I see people explicitly using ##\Lambda^{-1}##, it is because they do not have primes on the indices, and hence they need the explicit inverse written there to indicate the 'direction' of the transform. When your indices are already primed, there is no longer any ambiguity, so the usage of ##\Lambda^{-1}## doesn't make much sense.
 

1. What is the Lorentz transformation of electric and magnetic fields?

The Lorentz transformation is a mathematical formula that describes how electric and magnetic fields change in different reference frames, specifically in the context of special relativity. It takes into account the effects of time dilation and length contraction on electric and magnetic fields.

2. Why is the Lorentz transformation important?

The Lorentz transformation is important because it allows us to understand how electric and magnetic fields behave in different reference frames, which is necessary for accurately describing physical phenomena in the context of special relativity. It also helps us reconcile the laws of electromagnetism with the principles of special relativity.

3. How does the Lorentz transformation affect the strength of electric and magnetic fields?

The Lorentz transformation does not affect the strength of electric and magnetic fields themselves, but rather describes how their strength appears to change when observed from different reference frames. The transformation takes into account the relative motion of the observer and the source of the fields.

4. Can the Lorentz transformation be applied to all types of electric and magnetic fields?

Yes, the Lorentz transformation can be applied to all types of electric and magnetic fields, as long as they are governed by the laws of electromagnetism. This includes fields produced by moving charges, changing electric currents, and permanent magnets.

5. Can the Lorentz transformation be derived from first principles?

Yes, the Lorentz transformation can be derived from first principles, specifically from the principles of special relativity and the laws of electromagnetism. This involves using mathematical equations and concepts such as the Lorentz factor, time dilation, and length contraction.

Similar threads

  • Advanced Physics Homework Help
Replies
8
Views
751
  • Advanced Physics Homework Help
Replies
0
Views
561
  • Advanced Physics Homework Help
Replies
3
Views
865
  • Advanced Physics Homework Help
Replies
20
Views
2K
  • Advanced Physics Homework Help
Replies
5
Views
3K
  • Advanced Physics Homework Help
Replies
2
Views
2K
  • Advanced Physics Homework Help
Replies
22
Views
3K
  • Advanced Physics Homework Help
Replies
1
Views
1K
  • Advanced Physics Homework Help
Replies
3
Views
1K
  • Advanced Physics Homework Help
Replies
1
Views
3K
Back
Top