MIT OCW, 8.02 Electromagnetism: Potential for an Electric Dipole

In summary, the conversation discusses the potential at a point P due to a charge q, which is given by a formula involving the distance between the charge and point P. The potential is computed using superposition in the case of two charges. The conversation then moves on to discuss the polar coordinates of the potential and the electric field, and concludes with a question about the approach for computing the potential energy and final speed of a charge located on the y-axis at the point (d,0). The approach is deemed correct, with a minor correction about the coordinates of the point in question.
  • #1
zenterix
480
70
Homework Statement
The following problem is from MIT OCW's online 8.02, Electromagnetism. It has items (a)-(d), and my question is about (d). I will show calculations from all items before I get to item d) at the end.

Consider two oppositely charged objects located along the y-axis. The positively charged object has charge ##+q## and is located at ##y=+a##, and the negatively charged object has charge ##-q## and is located at ##y=-a##, forming an electric dipole along the ##y##-axis.

(a) Find an expression for the electric potential ##V(r,\theta)## at point ##P## assuming ##V(\infty)=0##.

(b) When ##r>>a##, use a Taylor series expansion to show that the electric potential can be approximated by the expression ##V(r,\theta)=k\vec{p}\cdot\hat{r}/r^2## where ##\vec{p}## is the electric dipole moment and ##\hat{r}## is the radial unit vector in polar coordinates.

(c) The component of the electric field in polar coordinates is given by the expressions

$$E_{\theta}(r,\theta)=-\frac{1}{r}\frac{\partial}{\partial\theta}V(r,\theta)$$

$$E_{r}(r,\theta)=-\frac{\partial}{\partial r}V(r,\theta)$$

Calculate the components of the electric field in polar coordinates at point ##P## associated with your "dipole approximation" in part (b).

(d) A positively charged dust particle with mass ##m## and charge ##+q## is released from rest at point B (not shown on the drawing) located on the y-axis at the point given by coordinates ##(d,0)##, ##d>a##. In what direction will it accelerate? What is the speed of the particle when it has traveled a distance ##s## from its original position at point B? Answer this question using the exact formulas, not the approximation in part b.
Relevant Equations
My doubt is specifically about item d. I will quickly show the calculations for a, b, and c before showing my thoughts on d.
Here is a depiction of the problem

1679466693244.jpeg


a) The potential at any point P due to a charge q is given by ##\frac{kq}{r}=\frac{kq}{\lvert \vec{r}_s-\vec{r}_P \rvert}##, where ##r## is the distance from the charge to point P, which is the length of the vector difference between ##\vec{r}_s##, the position of the source charge, and ##\vec{r}_{P}##, the position vector of point P.

Since we have two charges, we compute the potential at a point P using superposition.

Let point P have coordinates ##(x,y)##. Then

$$\vec{r}_1=a\hat{j}$$
$$\vec{r}_2=-a\hat{j}$$
$$\vec{r}_P=x\hat{i}+y\hat{j}$$
$$\lvert \vec{r}_P-\vec{r}_1\rvert = \lvert\langle x,y-a\rangle\rvert=\sqrt{x^2+(y-a)^2}$$
$$\lvert \vec{r}_P-\vec{r}_2\rvert = \lvert\langle x,y+a\rangle\rvert=\sqrt{x^2+(y+a)^2}$$

Thus, by superposition we have

$$V_P(x,y)=\frac{kq}{\sqrt{x^2+(y-a)^2}}+\frac{k(-q)}{\sqrt{x^2+(y+a)^2}}$$

Using

$$x=r\sin{\theta}$$
$$y=r\cos{\theta}$$

we can write ##V_P## in polar coordinates

$$V_P(r,\theta)=\frac{kq}{\sqrt{r^2-2ra\cos{\theta}+a^2}}-\frac{kq}{r^2+2ra\cos{\theta}+a^2}$$

b) Assume ##r>>a##. Then ##a/r \to 0##. I won't write out the calculations for this approximation. The result is that

$$V_P(r,\theta) \approx \frac{2kqa\cos{\theta}}{r^2}$$

The dipole moment for our dipole is

$$\vec{p}=q\vec{r}_1+(-q)\vec{r}_2$$
$$=2qa\hat{j}$$

Then, we have

$$\vec{p}\cdot \hat{r}=(2qa)\hat{j}\cdot(\sin{\theta}\hat{i}+\cos{\theta}\hat{j})$$

$$=2qa\cos{\theta}$$

and so

$$\vec{p}\cdot \vec{r}k=\frac{2kqa\cos{\theta}}{r^2}=\frac{pk\cos{\theta}}{r^2}$$

Note that this is the same as the potential function at point P, as we wanted to show.

c) To find the polar components of the electric field we simply compute

$$E_{\theta}(r,\theta)=-\frac{1}{r}\frac{\partial}{\partial\theta}V(r,\theta)=\frac{2qka\sin{\theta}}{r^3}=\frac{kp\sin{\theta}}{r^3}$$

$$E_{r}(r,\theta)=-\frac{\partial}{\partial r}V(r,\theta)=\frac{4kqa\cos{\theta}}{r^3}=\frac{2kp\cos{\theta}}{r^3}$$

Finally, we reach part d), which is what this question is about. Here is a depiction

1679465935343.jpeg


As far as I can tell, the force at any point on the ##y##-axis only has a component in the direction of ##\hat{j}##. Since the charge at B is positive and the closest charge from the dipole is also positive, the charge at point B will accelerate upwards toward point A which in polar coordinates is ##(d+s,0)##.

Previously, we calculated the potential at every point, so we know the potential at ##(d,0)## and ##(d+s,0)##.

The difference in potential ##V_A-V_B## equals the change in potential energy per unit charge between B and A. That is

$$\Delta V=\frac{\Delta U}{q}=\frac{-\Delta K}{q}=\frac{-mv_{final}^2}{2q}$$

Since we know the potentials, and since we know the charge at B is ##+q## and starts at rest, we can compute the change in potential energy of this charge, and that should give us the change in kinetic energy, and thus the final speed.

Is this approach correct?
 
Physics news on Phys.org
  • #2
"located on the y-axis at the point given by coordinates (d,0)"
That's on the x-axis, no? I guess they mean (0,d), in which case your approach is correct.
 
  • Like
Likes MatinSAR and Charles Link

1. What is MIT OCW?

MIT OCW (OpenCourseWare) is a free online platform that provides access to educational materials from courses offered at the Massachusetts Institute of Technology (MIT). It includes lecture notes, assignments, and exams for a wide range of subjects.

2. What is the course 8.02 Electromagnetism: Potential for an Electric Dipole about?

This course is an introduction to the principles of electromagnetism, focusing on the potential for an electric dipole. It covers topics such as electric fields, electric potential, Gauss's law, and capacitance.

3. Is this course suitable for beginners?

While some prior knowledge of physics and calculus is recommended, this course is designed to be accessible to students with a basic understanding of these subjects. It is also suitable for those with a strong interest in electromagnetism who are willing to put in the effort to learn the material.

4. Can I earn credit for completing this course?

No, MIT OCW courses do not offer credit or certification. However, you can use the materials to supplement your own studies or to prepare for a course on electromagnetism at your own institution.

5. Are there any prerequisites for this course?

Yes, it is recommended to have a solid understanding of basic physics concepts such as forces, motion, and energy, as well as calculus. It is also helpful to have a basic understanding of vector algebra and trigonometry.

Similar threads

  • Introductory Physics Homework Help
Replies
1
Views
196
  • Introductory Physics Homework Help
Replies
2
Views
1K
  • Introductory Physics Homework Help
Replies
10
Views
266
  • Introductory Physics Homework Help
Replies
1
Views
158
  • Introductory Physics Homework Help
Replies
6
Views
165
  • Introductory Physics Homework Help
Replies
3
Views
223
  • Introductory Physics Homework Help
Replies
21
Views
1K
  • Introductory Physics Homework Help
Replies
4
Views
816
  • Introductory Physics Homework Help
Replies
7
Views
1K
  • Introductory Physics Homework Help
Replies
25
Views
282
Back
Top