MHB *oblique asymptotes of radical expressions

AI Thread Summary
Oblique asymptotes can occur with radical expressions, as demonstrated by the function \(y = \sqrt{x^2 + 6x}\), which has asymptotes \(y = x + 3\) and \(y = -x - 3\). For large values of \(x\), the expression behaves asymptotically like \(x + 3\) for positive \(x\) and \(-x - 3\) for negative \(x\). The derivation involves manipulating the expression to show that the difference between the function and the asymptote approaches zero as \(x\) approaches infinity. By completing the square, the function can be transformed into a hyperbolic form, revealing its asymptotic behavior. Understanding these asymptotes expands the concept beyond traditional rational expressions.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
it seems most oblique asymptotes are mostly with rational expressions but
$\sqrt{x^2+6x}$ has the asymptote of $y=x+3$ and $y=-x-3$
I don't know how this is derived since it is not a rational expression

thanks ahead:cool:
 
Mathematics news on Phys.org
karush said:
it seems most oblique asymptotes are mostly with rational expressions but
$\sqrt{x^2+6x}$ has the asymptote of $y=x+3$ and $y=-x-3$
I don't know how this is derived since it is not a rational expression

thanks ahead:cool:

For large \(x\) we have the asymtotic behavior: \[\sqrt{x^2+6x} \sim \sqrt{x^2+6x+9}=\pm (x+3)\]
Note deliberate error of use of the \(\pm\) sign, a square root is by definition positive, so as \(x \to +\infty,\ \sqrt{x^2+6x} \sim x+3\), and \(x \to -\infty,\ \sqrt{x^2+6x} \sim -(x+3)\). See plot below.

View attachment 430

CB
 

Attachments

  • plot.PNG
    plot.PNG
    3.6 KB · Views: 90
Last edited:
karush said:
it seems most oblique asymptotes are mostly with rational expressions but
$\sqrt{x^2+6x}$ has the asymptote of $y=x+3$ and $y=-x-3$
I don't know how this is derived since it is not a rational expression

thanks ahead:cool:

As usual, you can proceed by studying the difference $f(x)-(ax+b)$ since you've got that information. For calculus, you would then use the conjuguated expression.

For $x>0$:
$\sqrt{x^2+6x}-x-3=\frac{(\sqrt{x^2+6x}-x-3)(\sqrt{x^2+6x}+x+3)}{\sqrt{x^2+6x}+x+3}=\frac{x^2+6x-(x+3)^2}{\sqrt{x^2+6x}+x+3)}=\frac{-9}{\sqrt{x^2+6x}+x+3)}$
therefore $\lim_{x->+\infty}{f(x)-x-3}=0$
you can even deduce from above that the curve is under the asymptote ($f(x)-(ax+b) < 0 $)
 
Hello, karush!

It seems most oblique asymptotes are mostly with rational expressions,
but $y \:=\:\sqrt{x^2+6x}$ has the asymptotes $y=x+3$ and $y=-x-3$
I don't know how this is derived since it is not a rational expression.
We have: .$y \:=\:\sqrt{x^2+6x} $

Square both sides: .$y^2 \:=\:x^2+6x \quad\Rightarrow\quad x^2 + 6x - y^2 \:=\:0 $

Complete the square: .$x^2 + 6x \color{red}{+ 9} - y^2 \:=\:0 \color{red}{+9} \quad\Rightarrow\quad (x+3)^2 - y^2 \:=\:9 $

Divide by 9: .$\dfrac{(x+3)^2}{9} - \dfrac{y^2}{9} \:=\:1$The graph is the upper half of this hyperbola,

. . whose asymptotes are: $y \:=\:\pm(x+3)$
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

Replies
3
Views
1K
Replies
20
Views
2K
Replies
2
Views
1K
Replies
3
Views
2K
Replies
4
Views
5K
Replies
22
Views
2K
Back
Top