MHB Optimizing the Area of a Norman Window - 25 Feet Perimeter

  • Thread starter Thread starter MarkFL
  • Start date Start date
  • Tags Tags
    Area Window
AI Thread Summary
The discussion focuses on optimizing the area of a Norman window, which consists of a semicircle above a rectangle, given a perimeter of 25 feet. The area is calculated using the objective function f(h,r) = 2rh + (1/2)πr², with the constraint g(h,r) = 2r + 2h + πr - P = 0. By applying Lagrange multipliers, it is determined that the height h equals the radius r, leading to the maximum area formula f_max = P² / (2(4 + π)). Substituting the perimeter value, the maximum area is found to be 625 / (2(4 + π)) square feet. This approach provides a mathematical solution for maximizing the area of the Norman window under the given constraints.
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

A Norman window has the shape of a semicircle atop a rectangle so that the diameter of the semicircle is equal?

A Norman window has the shape of a semicircle atop a rectangle so that the diameter of the semicircle is equal to the width of the rectangle. What is the area of the largest possible Norman window with a perimeter of 25 feet?

Here is a link to the problem:

A Norman window has the shape of a semicircle atop a rectangle so that the diameter of the semicircle is equal? - Yahoo! Answers

I have posted a link there to this topic so that the OP can find my response.
 
Mathematics news on Phys.org
Hello Christopher,

One approach is to use Lagrange multipliers. We have the objective function:

$\displaystyle f(h,r)=2rh+\frac{1}{2}\pi r^2$

subject to the constraint:

$\displaystyle g(h,r)=2r+2h+\pi r-P=0$

giving the system:

$\displaystyle r=\lambda$

$\displaystyle 2h+\pi r=\lambda (2+\pi)$

which implies:

$\displaystyle h=r$

Substituting into the constraint, we then find:

$\displaystyle g(r)=(4+\pi)r=P$

$\displaystyle h=r=\frac{P}{4+\pi}$

And finally, substituting into the objective function, we find:

$\displaystyle f_{\text{max}}=\frac{P^2}{2(4+\pi)}$

Now, plug in the given perimeter for P to find the maximum area of the window:

$\displaystyle f_{\text{max}}=\frac{(25\text{ ft})^2}{2(4+\pi)}=\frac{625}{2(4+\pi)}\,\text{ft}^2$
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top