A Plotting a Bragg Curve in SRIM

rphys
Messages
4
Reaction score
0
I'd like to plot a Bragg curve for an alpha particle in air.

I'd like to make one plot for 239Pu (5.156 MeV alpha) and one plot for 238U (4.267 MeV).

Does anyone know how I can do this? I would like a basic plot of stopping power (MeV/cm) vs path length (cm).

Thank you
 
Physics news on Phys.org
It isn't a Bragg curve, but by clicking the "stopping range / tables" feature I can get the range data for the alpha particle (below). The only problem is I can only seem to input an element (e.g. helium) and not an alpha particle itself. Is 37.60 mm about right for a 5.156 MeV helium / alpha particle in air?==================================================================
SRIM version ---> SRIM-2013.00
Calc. date ---> January 01, 2019
==================================================================

Disk File Name = SRIM Outputs\Helium in Air, Dry (ICRU-104) (gas).txt

Ion = Helium [2] , Mass = 4.003 amu

Target Density = 1.2048E-03 g/cm3 = 4.9872E+19 atoms/cm3
Target is a GAS
======= Target Composition ========
Atom Atom Atomic Mass
Name Numb Percent Percent
---- ---- ------- -------
C 6 000.02 000.02
O 8 021.08 023.18
N 7 078.43 075.51
Ar 18 000.47 001.29
====================================
Bragg Correction = 0.00%
Stopping Units = MeV / (mg/cm2)
See bottom of Table for other Stopping units

Ion dE/dx dE/dx Projected Longitudinal Lateral
Energy Elec. Nuclear Range Straggling Straggling
-------------- ---------- ---------- ---------- ---------- ----------
5.16 MeV 7.533E-01 4.978E-04 37.60 mm 1.39 mm 828.87 um
-----------------------------------------------------------
Multiply Stopping by for Stopping Units
------------------- ------------------
1.2048E-02 eV / Angstrom
1.2048E-01 keV / micron
1.2048E-01 MeV / mm
1.0000E+00 keV / (ug/cm2)
1.0000E+00 MeV / (mg/cm2)
1.0000E+03 keV / (mg/cm2)
2.4158E+01 eV / (1E15 atoms/cm2)
2.1045E+00 L.S.S. reduced units
==================================================================
(C) 1984,1989,1992,1998,2008 by J.P. Biersack and J.F. Ziegler
 
Back
Top