Polarization Formulae for Inner-Product Spaces ....

In summary, Peter is reading D. J. H. Garling's book: "A Course in Mathematical Analysis: Volume II: Metric and Topological Spaces, Functions of a Vector Variable". He is having difficulty proving the polarization formulae for the complex case. He requests help from others.
  • #1
Math Amateur
Gold Member
MHB
3,990
48
I am reading D. J. H. Garling's book: "A Course in Mathematical Analysis: Volume II: Metric and Topological Spaces, Functions of a Vector Variable" ... ...

I am focused on Chapter 11: Metric Spaces and Normed Spaces ... ...

I need some help with the polarization formula for the complex case ...

Garling's statement of the polarization formulae reads as follows:
Garling - Polarization Formulae for Inner Product Spaces ,,, ,,,.png

In the above text from Garling we read the following:" ... ... in the complex case we have the polarization formula## \langle x,y \rangle = \frac{1}{4} \left( \sum_{ j = 0 }^3 i^j \| x + i^j y \|^2 \right) ## ... ... "
Can someone please demonstrate how to prove that ##\langle x,y \rangle = \frac{1}{4} \left( \sum_{ j = 0 }^3 i^j \| x + i^j y \|^2 \right)## ...?Help will be appreciated ...

Peter
==========================================================================================***NOTE***

It may help readers of the above post to know Garling's notation and approach to inner-product spaces ... ... so I am providing the same ... as follows:
Garling - 1 -  Start of Section on Inner-Product Spaces ... PART 1 ... .png

Garling - 2 -  Start of Section on Inner-Product Spaces ... PART 2 ... .png

Garling - 3 -  Start of Section on Inner-Product Spaces ... PART 3 ... .png

Garling - 4 -  Start of Section on Inner-Product Spaces ... PART 4 ... .png

Hope that helps ...

Peter
 

Attachments

  • Garling - Polarization Formulae for Inner Product Spaces ,,, ,,,.png
    Garling - Polarization Formulae for Inner Product Spaces ,,, ,,,.png
    15.5 KB · Views: 1,353
  • Garling - 1 -  Start of Section on Inner-Product Spaces ... PART 1 ... .png
    Garling - 1 - Start of Section on Inner-Product Spaces ... PART 1 ... .png
    29.1 KB · Views: 648
  • Garling - 2 -  Start of Section on Inner-Product Spaces ... PART 2 ... .png
    Garling - 2 - Start of Section on Inner-Product Spaces ... PART 2 ... .png
    25.3 KB · Views: 578
  • Garling - 3 -  Start of Section on Inner-Product Spaces ... PART 3 ... .png
    Garling - 3 - Start of Section on Inner-Product Spaces ... PART 3 ... .png
    23.3 KB · Views: 550
  • Garling - 4 -  Start of Section on Inner-Product Spaces ... PART 4 ... .png
    Garling - 4 - Start of Section on Inner-Product Spaces ... PART 4 ... .png
    23.8 KB · Views: 911
Physics news on Phys.org
  • #2
We don't need any of the attached support material. The result follows directly from the axioms of a complex inner product:

\begin{align*}
\sum_{j=0}^3 i^j\|x+i^j y\|^2
% 1
&= \sum_{j=0}^3 i^j \langle x+i^j y ,x+i^j y\rangle
\\ % 2
&= \sum_{j=0}^3 i^j
\left(
\langle x ,x\rangle +
i^j \langle y,x\rangle +
\left( i^j\right)^*\langle x , y \rangle +
i^j \left( i^j\right)^* \langle y , y\rangle
\right)
\\ % 3
&= \sum_{j=0}^3 i^j
\left(
\langle x ,x\rangle +
i^j \langle y,x\rangle +
\left(i^j \langle y,x\rangle \right)^* +
\left( i\ i^*\right)^j \langle y , y\rangle
\right)
\\ % 4
&= \left(\langle x,x\rangle + \langle y,y\rangle\right)
\sum_{j=0}^3 i^j
+
\sum_{j=0}^3 i^j\cdot
2\ \Re \left( i^j \langle y,x\rangle\right)
\\ % 5
&=0
+
2
\left(
\Re \langle y,x\rangle +
i\cdot \Re \left( i \langle y,x\rangle\right)
- \Re \left( - \langle y,x\rangle\right)
-i\cdot \Re \left(-i \langle y,x\rangle \right)
\right)
\\ % 6
&=
2
\left(
\Re \langle y,x\rangle
- i\cdot \Im \langle y,x\rangle
+\Re \langle y,x\rangle
-i\cdot \Im \langle y,x\rangle
\right)
\\ % 7
&=
2
\left(
\langle y,x\rangle^*
+
\langle y,x\rangle^*
\right)
\\ % 8
&=
4
\langle x,y\rangle
\end{align*}
 
  • Like
Likes Keith_McClary and Math Amateur
  • #3
A lot of times greater generality isn't necessarily helpful but because ##m## evenly spaced points on the unit circle comes up so often, it seems worth pointing out that your complex polarization identity works for any natural number ##m \geq 3##, not just the ##m = 4## case that the book stated.

- - - -
where we recall that ##\sum_{k=0}^{m-1} \omega^k = 0##, and again with the restriction that natural number ##m \geq 3## we recall ##\sum_{k=0}^{m-1} \omega^{2k} = 0##
(why?)
- - - -
start by expanding the squared 2 norm
##\langle \mathbf x, \mathbf y \rangle = \frac{1}{m} \sum_{k=0}^{m-1} \big \Vert \mathbf x + \omega^k \mathbf y \big \Vert_2^2 \omega^k = \frac{1}{m} \sum_{k=0}^{m-1} \Big(\big \Vert \mathbf x \big \Vert_2^2 \omega^k + \big \Vert \mathbf y \big \Vert_2^2 \omega^k + \langle \mathbf x, \omega^k \mathbf y \rangle \omega^k + \langle \omega^k \mathbf y, \mathbf x \rangle \omega^k \Big)##

split the summation, and make use of conjugate linearity by removing the ##\omega^k## from the ##\mathbf y## terms of the inner product

##\langle \mathbf x, \mathbf y \rangle = \frac{1}{m} \sum_{k=0}^{m-1} \Big(\big(\big \Vert \mathbf x \big \Vert_2^2 + \big \Vert \mathbf y \big \Vert_2^2\big)\omega^k \Big) + \frac{1}{m} \sum_{k=0}^{m-1} \Big(\langle \mathbf x, \mathbf y \rangle \bar{\omega}^k\omega^k\Big) + \frac{1}{m} \sum_{k=0}^{m-1} \Big(\langle \mathbf y, \mathbf x \rangle \omega^{k} \omega^k\Big)##

finally:

##\langle \mathbf x, \mathbf y \rangle = \Big(\big( \big \Vert \mathbf x \big \Vert_2^2 + \big \Vert \mathbf y \big \Vert_2^2 \big) \frac{1}{m} \big(\sum_{k=0}^{m-1} \omega^k\big) \Big) + \langle \mathbf x, \mathbf y \rangle \Big(\frac{1}{m} \sum_{k=0}^{m-1} 1 \big)+ \langle \mathbf y, \mathbf x \rangle\Big(\frac{1}{m} \sum_{k=0}^{m-1} \omega^{2k} \Big) = \big(0\big) + \langle \mathbf x, \mathbf y \rangle \big(1\big)+ \big(0\big) = \langle \mathbf x, \mathbf y \rangle ##
 
Last edited:
  • Like
Likes Math Amateur
  • #4
THanks Andrew, StoneTemplePython ...

Appreciate the help and insights ...

Just working through your posts now ...

Thanks again ...

Peter
 

1. What is polarization formula for inner-product spaces?

The polarization formula for inner-product spaces is a mathematical expression that relates the inner product of two vectors to their norms and angle between them. It is used to calculate the inner product of vectors in a more efficient way.

2. How is the polarization formula derived?

The polarization formula is derived using the properties of inner product spaces, such as linearity and symmetry. It involves breaking down the inner product into simpler terms and using the properties to simplify the expression.

3. What are the applications of polarization formula in real life?

The polarization formula has many applications in fields such as physics, engineering, and computer science. It is used to calculate the work done by a force, determine the direction of electric fields, and even in image processing algorithms.

4. Can the polarization formula be extended to other types of spaces?

Yes, the polarization formula can be extended to other types of spaces, such as Banach spaces and Hilbert spaces. However, the formula may differ slightly depending on the properties of the space.

5. Are there any limitations to using the polarization formula?

The polarization formula is limited to inner-product spaces and may not be applicable in other types of spaces. Additionally, it may not be as useful for higher-dimensional spaces where the calculation of norms and angles becomes more complex.

Similar threads

  • Topology and Analysis
Replies
2
Views
1K
Replies
2
Views
949
Replies
2
Views
1K
Replies
6
Views
1K
Replies
2
Views
2K
Replies
5
Views
1K
Replies
2
Views
1K
Replies
2
Views
1K
Back
Top