MHB Pre-calculus Grade 11 IB (higher level)

AI Thread Summary
To solve for a and b in the function transformation problem, the original function f(x) = ax + b undergoes a series of transformations resulting in g(x) = 4 - 15x. The transformations include a translation, reflection through the x-axis, and a horizontal stretch. By applying the transformation rules, the equations -3a = -15 and -a + b + 2 = 4 are derived, leading to the solutions a = 5 and b = 7. The discussion emphasizes understanding how each transformation affects the function's graph to arrive at the correct values of a and b.
TeddyJohnson
Messages
1
Reaction score
0
Can anyone explain how to solve this question, please? The answer is a=5 & b=7, but I don't understand how to solve it.

The graph of function f(x) = ax + b is transformed by the following sequence:

translation by (1) (meaning 1 horizontal, 2 vertical)
(2)

reflection through y=0

horizontal stretch, scale factor 1/3, relative to x=0

The resulting function is g(x)=4-15x
Find a & b

Thanks for your help.
 
Mathematics news on Phys.org
Hi, and welcome to the forum!

To solve this problem you need to know how change of function $f$ affects the graph of $f$. Here are a few rules.
  1. $f(x)\mapsto f(x-a)$: horizontal shift by $a$ to the right.
  2. $f(x)\mapsto f(x)+b$: vertical shift by $b$ up.
  3. $f(x)\mapsto f(-x)$: reflection through $y=0$.
  4. $f(x)\mapsto f(x/k)$: horizontal stretch with scale factor $k$ relative to $x=0$.
Suppose the original function is $f(x)=ax+b$. Using these rules, the formula changes as follows.
  1. Translation by (1, 2): $a(x-1)+b+2$.
  2. Reflection through $y=0$: $a(-x-1)+b+2$.
  3. Horizontal stretch with scale factor $1/3$ relative to $x=0$: $a(-3x-1)+b+2$.
The problem statement says that $a(-3x-1)+b+2=4-15x$. Equating the numbers multiplied by $x$ and the free coefficient we get two equations: $-3a=-15$ and $-a+b+2=4$, from where $a=5$ and $b=7$.

It is important to remember that when viewing a formula like $a(-x-1)+b+2$ as a function of $x$, only $x$ changes when we go, say, from $f(x)$ to $f(3x)$. The result is $a(-(3x)-1)+b+2$ and not $3(a(-x-1)+b+2)$.

Here is another way. The points in the original graph have coordinates $(x, ax+b)$. The geometric transformation change the coordinates as follows.
  1. Translation by (1, 2): $(x+1,ax+b+2)$.
  2. Reflection through $y=0$: $(-(x+1),ax+b+2)$.
  3. Horizontal stretch with scale factor $1/3$ relative to $x=0$: $(-(x+1)/3,ax+b+2)$.
The resulting point is $(x', 4-15x')$ for some $x'$. Therefore $x'=-(x+1)/3$ and $4-15x'=4+5(x+1)=5x+9$. Equating this with $ax+b+2$ (separately coefficients at $x$ and the free one) we get $a=5$ and $b+2=9$, i.e., $b=7$.

If you need more explanation, feel free to ask.
 
I think there’s a typo: the reflection should be through $\color{red}x\color{black}=0$, not $y=0$.

Here’s yet another way: work backwards.

Start with $g(x)=4-15x$.

Do the reverse of horizontal stretching by $\frac13$, namely horizontal stretching by $3$. Under this mapping, $(x',y')=(3x,y)$ $\implies$ $(x,y)=\left(\frac13x',y'\right)$ $\implies$ $g(x)=4-15x\mapsto h_1(x)=4-15\left(\frac13x\right)=4-5x$.

Next, the reverse of reflection in $x=0$, which is the same transformation: $(x',y')=(-x,y)$ $\implies$ $(x,y)=\left(-x',y'\right)$ $\implies$ $h_1(x)=4-5x\mapsto h_2(x)=4-5(-x)=4+5x$.

Finally, the reverse of the translation $\begin{pmatrix}1 \\ 2\end{pmatrix}$, which is $\begin{pmatrix}-1 \\ -2\end{pmatrix}$: $(x',y')=(x-1,y-2)$ $\implies$ $(x,y)=\left(x'+1,y'+2'\right)$ $\implies$ $h_2(x)=4+5x\mapsto f(x)+2=4+5(x+1)=9+5x$, i.e. $f(x)=5x+7$.

Hence $a=5,b=7$.
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top