I Probability when measuring a local observable

Yan Campo
Messages
2
Reaction score
0
TL;DR Summary
I need to show that the probability when measuring a local $$O^{a}$$ observable is $$Pr(o_{j}^{(a)})=Tr(\rho_{ab}(\ket{o_{j}^{(a)}}\bra{o_{j}^{(a)}}\otimes \mathbb{I}_{2}))$$
I have information that $$\rho_{ab}=\sum_{j}p_{j}\ket{\Psi_{j}^{ab}}\bra{\Psi_{j}^{ab}}$$ and $$Pr(o_{j}^{(a)}|\Psi_{ab})=Tr_{ab}(\ket{\Psi_{ab}}\bra{\Psi_{ab}}(\ket{o_{j}^{(a)}}\bra{o_{j}^{(a)}}\otimes \mathbb{I}_{2})) \text{.}$$
I started by representing the density operator for pure states, such that $$\rho = \ket{\Psi^{ab}}\bra{\Psi^{ab}}\text{.}$$
Substituting directly into the equation that was given for the probability I arrive at a result $$Pr(o_{j}^{(a)}|\Psi_{ab})=Tr_{ab}(\ket{\Psi_{j}^{ab}}\bra{\Psi_{j}^{ab}}(\ket{o_{j}^{(a)}}\bra{o_{j}^{(a)}}\otimes \mathbb{I}_{2}))\text{.}$$
I believe this is not right, as I have not found a way to make this equal to what was asked.
Any clue what should I do? Any help is welcome.
 
Last edited:
Physics news on Phys.org
How about starting from the definition of the expectation value of an operator given a density operator?
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In her YouTube video Bell’s Theorem Experiments on Entangled Photons, Dr. Fugate shows how polarization-entangled photons violate Bell’s inequality. In this Insight, I will use quantum information theory to explain why such entangled photon-polarization qubits violate the version of Bell’s inequality due to John Clauser, Michael Horne, Abner Shimony, and Richard Holt known as the...
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
I asked a question related to a table levitating but I am going to try to be specific about my question after one of the forum mentors stated I should make my question more specific (although I'm still not sure why one couldn't have asked if a table levitating is possible according to physics). Specifically, I am interested in knowing how much justification we have for an extreme low probability thermal fluctuation that results in a "miraculous" event compared to, say, a dice roll. Does a...
Back
Top