An example of state determination (Ballentine Problem 8.4)

  • #1
EE18
112
13
Homework Statement
See attached image.
Relevant Equations
See below.
I've given the question as an image as some of the formatting was difficult for me in the small window given:
Screen Shot 2023-08-08 at 9.00.09 PM.png

My work is below. I got (a), but cannot get (b):

(a) It was a theorem proved in the text that any measurement on one subsystem will always be fully determined by the reduced state operator of the corresponding subsystem. That is, any measurement of an observable on the composite system represented by an operator of the form (take subsystem 1 WLOG) ##R^{(1) }\otimes I^{(2)}## can be predicted only in terms of the reduced state operator ##\rho^{(1)}## (see the bottom of 217). Thus we begin answering this problem by computing the two reduced state operators. First we need ##\rho##, which can be found (since this is a pure state initially given in ket representation) as (note we use the shorthand that, for example, ##\ket{+-} \equiv \ket{+} \otimes \ket{-}##)
$$\rho = \ket{\psi_c}\bra{\psi_c} = \frac{1}{2}\left(\ket{+-}\bra{+-} +c\ket{-+}\bra{+-} +c^*\ket{+-}\bra{-+} +\ket{-+}\bra{-+}\right),$$
where we have used ##|c|^2 = 1##.
Then we immediately find (tracing over the relevant subsystem and using the definition of the inner product on a tensor product space)
$$\rho^{(1)} = \frac{1}{2}\left(\ket{+}\bra{+} + \ket{-}\bra{-}\right) = \rho^{(2)}.$$
The reduced state operators are independent of ##c##, and it's thus immediately clear that no measurements on only one subsystem can distinguish between composite states with different values of ##c## (since any such measurement would use the reduced state operator which is independent of ##c##).

(b) Obviously we'll need to make use of "cross terms". Consider measuring 1 along the ##x## and 2 along the ##y##. We can see from the structure of the Pauli matrices that in this ##\sigma_z## basis we have
$$\sigma_x = \ket{-}\bra{+} + \ket{+}\bra{-}$$
$$\sigma_y = i\ket{-}\bra{+} -i\ket{+}\bra{-}$$
Then using the linearity of the tensor product we get to
$$\sigma_x^{(1)} \otimes\sigma_y^{(2)} = (\ket{-}\bra{+} + \ket{+}\bra{-}) \otimes (i\ket{-}\bra{+} -i\ket{+}\bra{-}) = i\ket{--}\bra{++} +i\ket{+-}\bra{-+} -i\ket{-+}\bra{+-} -i\ket{++}\bra{--},$$
where we have used our shorthand notation. Next, we compute
$$\rho \sigma_x^{(1)} \otimes\sigma_y^{(2)} = \frac{1}{2}\left(i\ket{+-}\bra{-+} + ci\ket{-+}\bra{-+} -c^*i\ket{+-}\bra{+-} -i\ket{-+}\bra{+-}\right)$$
Finally, we have
$$\langle\sigma_x^{(1)} \otimes\sigma_y^{(2)}\rangle = Tr({\rho \sigma_x^{(1)} \otimes\sigma_y^{(2)}}) = \frac{1}{2}(i + ci -c^*i - i) = \frac{1}{2}(ci + (ci)^*) = \Re(ci) =-\Im(c).$$

But I can't figure out another measurement to get me the real part of ##c##. I tried ##\sigma_y^{(1)} \otimes\sigma_x^{(2)}## as well as ##\sigma_z^{(1)} \otimes\sigma_x^{(2)}## but the former gave me the imaginary part again and the latter gave me zero IIRC. Can anyone supply a hint for what to check, or a better way to proceed here?
 
Physics news on Phys.org
  • #2
I guess you should try measuring arbitrary directions, i.e., the observable ##\vec{n_1} \cdot \hat{\vec{\sigma}}^{(1)} \otimes \vec{n}_2 \cdot \hat{\vec{\sigma}}^{(2)}## with arbitrary unit vectors ##\vec{n}_1## and ##\vec{n}_2##.
 
  • Like
Likes bhobba and topsquark

What is the Ballentine Problem 8.4?

The Ballentine Problem 8.4 is a thought experiment in quantum mechanics that involves a particle in a one-dimensional potential well. It is used to demonstrate the concept of state determination in quantum systems.

What is state determination in quantum mechanics?

State determination in quantum mechanics refers to the process of determining the state of a quantum system, which is described by a wave function. This involves measuring the system and obtaining a specific value, or eigenvalue, for the observable being measured.

How does the Ballentine Problem 8.4 demonstrate state determination?

In the Ballentine Problem 8.4, the particle is confined to a potential well and has a wave function that is a superposition of two states. By measuring the position of the particle, the wave function collapses to one of the two states, demonstrating the concept of state determination.

What is the significance of the Ballentine Problem 8.4?

The Ballentine Problem 8.4 is significant because it highlights the fundamental principles of quantum mechanics, including the probabilistic nature of measurements and the concept of superposition. It also illustrates the importance of state determination in understanding and predicting the behavior of quantum systems.

Are there any real-world applications of the Ballentine Problem 8.4?

The Ballentine Problem 8.4 is a theoretical concept, but it has real-world applications in quantum computing and cryptography. Understanding state determination is crucial in developing and utilizing these technologies, which rely on the principles of quantum mechanics.

Similar threads

  • Advanced Physics Homework Help
Replies
3
Views
890
  • Advanced Physics Homework Help
Replies
2
Views
1K
  • Advanced Physics Homework Help
Replies
2
Views
1K
  • Advanced Physics Homework Help
Replies
1
Views
232
  • Advanced Physics Homework Help
Replies
1
Views
679
  • Advanced Physics Homework Help
Replies
2
Views
763
  • Advanced Physics Homework Help
Replies
3
Views
968
  • Quantum Physics
Replies
9
Views
1K
  • Advanced Physics Homework Help
Replies
1
Views
805
  • Quantum Physics
Replies
4
Views
1K
Back
Top