Prove this variation: If a+b ∝ a-b, prove that a^2+b^2 ∝ ab

In summary, the problem states that if two non-zero integers, a and b, are in proportion to each other, then their squares are also in proportion to their product. However, the given proof is flawed as it is not specified that the constant of proportionality, k, must be the same for both equations. Additionally, the definition of proportionality used is tautological and only makes sense when the numbers involved are integers. Therefore, the statement cannot be proven and is not true for all real numbers.
  • #1
RChristenk
46
4
Homework Statement
If ##a+b \varpropto a-b ##, prove that ##a^2+b^2 \varpropto ab##
Relevant Equations
Basic fractions and algebra
##a+b \varpropto a-b## means ##a+b = k_1(a-b)##

##(a+b)^2=k_1^2(a-b)^2##

##a^2+b^2+2ab=a^2k_1^2+b^2k_1^2-2abk_1^2##

##2ab(1+k_1^2)=a^2(k_1^2-1)+b^2(k_1^2-1)##

##2ab(k_1^2+1)=(a^2+b^2)(k_1^2-1)##

##a^2+b^2=ab(\dfrac{2k_1^2+2}{k_1^2-1})##

Since ##a^2+b^2 \varpropto ab## means ##a^2+b^2=abk_2##, compared to what I got, I can say ##k_2 = \dfrac{2k_1^2+2}{k_1^2-1}##. Therefore ##a^2+b^2 \varpropto ab## has been proven. Is this a correct? Thanks.
 
Last edited by a moderator:
Physics news on Phys.org
  • #2
##a = 3, b = 1 \ \Rightarrow \ (a+b) = 2(a -b)##

##a^2 + b^2 = 10, \ ab = 3##
 
  • Like
Likes MatinSAR and FactChecker
  • #3
Have you stated the problem exactly and completely? Maybe I'm missing something but it seems false to me.
 
  • Like
Likes MatinSAR
  • #4
FactChecker said:
Have you stated the problem exactly and completely? Maybe I'm missing something but it seems false to me.
It's definitely false, given I provided a counterexample!
 
  • Like
Likes MatinSAR and FactChecker
  • #5
RChristenk said:
Homework Statement: If ##a+b \varpropto a-b ##, prove that ##a^2+b^2 \varpropto ab##
Relevant Equations: Basic fractions and algebra

##a+b \varpropto a-b## means ##a+b = k_1(a-b)##
What seems to be missing in the problem statement here is the idea that ##a^2 + b^2## must be shown to be in the same proportion to ab as a + b is to a - b.

IOW, if a + b = k(a - b), then ##a^2 + b^2 = kab##.
 
  • #6
Mark44 said:
What seems to be missing in the problem statement here is the idea that ##a^2 + b^2## must be shown to be in the same proportion to ab as a + b is to a - b.

IOW, if a + b = k(a - b), then ##a^2 + b^2 = kab##.
That doesn't seem possible.
 
  • #7
PeroK said:
That doesn't seem possible.
I agree. My comment was about I believe what the intent of the problem was, taking into account your counterexample. As a very simple example of what I am talking about, show that if ##x \varpropto y## then ##2x \varpropto 2y##. In the two resulting equations, the same constant applies to both.

What the OP is doing is something like this:
Show that ##x \varpropto y \Rightarrow x^2 \varpropto y^2##.
##x \varpropto y \Rightarrow x = ky## for some nonzero k
##x = ky \Rightarrow x^2 = k^2y^2 \Rightarrow x^2 = K y^2 \Rightarrow x^2 \varpropto y^2##

But if x = 4 and y = 2, then x = 2y, but ##x^2 = 16 \ne 8 = 2y^2##.
x and y aren't in the same proportion as ##x^2## and ##y^2##.
 
  • #8
The question just states if ##a+b \varpropto a-b##, prove that ##a^2+b^2 \varpropto ab##.

I think the constants are different. So ## a+b = k_1(a-b)## and ##a^2+b^2 = k_2ab##.

##\Rightarrow (a+b)^2=k_1^2(a-b)^2##

##\Rightarrow a^2+2ab+b^2=a^2k_1^2-2abk_1^2+b^2k_1^2##

Now using ##a^2+b^2 = k_2ab## and replacing the left side of the above equation, get:

##\Rightarrow k_2ab+2ab=a^2k_1^2-2abk_1^2+b^2k_1^2##

##\Rightarrow k_2ab+2ab+2abk_1^2=(a^2+b^2)k_1^2##

##\Rightarrow ab(k_2+2+2k_1^2)=(a^2+b^2)k_1^2##

##\Rightarrow a^2+b^2 = ab\dfrac{(2k_1^2+k_2+2)}{k_1^2}##

So since ##\dfrac{(2k_1^2+k_2+2)}{k_1^2}## is a new constant of variation, ##a^2+b^2 \varpropto ab## is proven. That's just what I'm thinking.
 
  • #9
RChristenk said:
The question just states if ##a+b \varpropto a-b##, prove that ##a^2+b^2 \varpropto ab##.

I think the constants are different. So ## a+b = k_1(a-b)## and ##a^2+b^2 = k_2ab##.

##\Rightarrow (a+b)^2=k_1^2(a-b)^2##

##\Rightarrow a^2+2ab+b^2=a^2k_1^2-2abk_1^2+b^2k_1^2##

Now using ##a^2+b^2 = k_2ab## and replacing the left side of the above equation, get:

##\Rightarrow k_2ab+2ab=a^2k_1^2-2abk_1^2+b^2k_1^2##

##\Rightarrow k_2ab+2ab+2abk_1^2=(a^2+b^2)k_1^2##

##\Rightarrow ab(k_2+2+2k_1^2)=(a^2+b^2)k_1^2##

##\Rightarrow a^2+b^2 = ab\dfrac{(2k_1^2+k_2+2)}{k_1^2}##

So since ##\dfrac{(2k_1^2+k_2+2)}{k_1^2}## is a new constant of variation, ##a^2+b^2 \varpropto ab## is proven. That's just what I'm thinking.
But this definition of "proportionality" is tautological. Any two quantities ##x## and ##y## are "proportional" (##y=kx##) if one is free to set ##k=y/x##. A proper proportionality requires that ##k## be independent of ##x,y##.
 
  • Like
Likes FactChecker and Mark44
  • #10
RChristenk said:
The question just states if ##a+b \varpropto a-b##, prove that ##a^2+b^2 \varpropto ab##.

I think the constants are different. So ## a+b = k_1(a-b)## and ##a^2+b^2 = k_2ab##.

##\Rightarrow (a+b)^2=k_1^2(a-b)^2##

##\Rightarrow a^2+2ab+b^2=a^2k_1^2-2abk_1^2+b^2k_1^2##

Now using ##a^2+b^2 = k_2ab## and replacing the left side of the above equation, get:

##\Rightarrow k_2ab+2ab=a^2k_1^2-2abk_1^2+b^2k_1^2##

##\Rightarrow k_2ab+2ab+2abk_1^2=(a^2+b^2)k_1^2##

##\Rightarrow ab(k_2+2+2k_1^2)=(a^2+b^2)k_1^2##

##\Rightarrow a^2+b^2 = ab\dfrac{(2k_1^2+k_2+2)}{k_1^2}##

So since ##\dfrac{(2k_1^2+k_2+2)}{k_1^2}## is a new constant of variation, ##a^2+b^2 \varpropto ab## is proven. That's just what I'm thinking.
Apart from when zero is involved, all real numbers are proportional to each other. This question only makes sense if the numbers involved are integers. In this case, if ##a, b \ne zero##, then:
$$a^a + b^2 = (\frac{a^2 + b^2}{ab})ab$$And there is no need to do any calculations. And nothing to prove.

Moreover, ##a + b = k(a - b)## is true for all real numbers ##a, b##. So, there is no "if" involved. It's only when ##a, b## and ##k## are integers that this condition makes sense.
 
  • Like
Likes FactChecker
  • #11
RChristenk said:
Homework Statement: If ##a+b \varpropto a-b ##, prove that ##a^2+b^2 \varpropto ab##
Perhaps ##a## and ##b## are supposed to be variables or parameters? Then ##a+b \varpropto a-b ## implies ##a \varpropto b ## and the result is trivial.

I originally assumed it was an integer equation. The question needs some context.
 
  • Like
Likes FactChecker
  • #12
PeroK said:
Perhaps ##a## and ##b## are supposed to be variables or parameters? Then ##a+b \varpropto a-b ## implies ##a \varpropto b ## and the result is trivial.
IMO, this is the answer that the problem had in mind.
 

1. What is the meaning of "∝" in the given variation?

The symbol "∝" represents proportionality, meaning that the two quantities on either side of the symbol are directly proportional to each other.

2. How do you prove that a+b ∝ a-b?

To prove that a+b ∝ a-b, you can use the definition of proportionality which states that two quantities are proportional if they have a constant ratio. Therefore, if a+b ∝ a-b, then there exists a constant k such that (a+b) = k(a-b). This can be rearranged to show that a+b ∝ a-b.

3. What does it mean for two quantities to be directly proportional?

Two quantities are directly proportional if they increase or decrease at the same rate. In other words, when one quantity increases, the other quantity also increases by a constant factor.

4. How can you prove that a^2+b^2 ∝ ab?

To prove that a^2+b^2 ∝ ab, we can use the given variation and substitute a+b and a-b with their equivalent expressions in terms of a and b. This gives us (a+b)^2+(a-b)^2 ∝ (a+b)(a-b), which simplifies to a^2+b^2 ∝ a^2-b^2. We can then use the definition of proportionality to show that there exists a constant k such that a^2+b^2 = k(ab).

5. Can you provide an example of a real-life situation where this variation can be observed?

One example of this variation can be seen in the relationship between the length and width of a rectangle. If we let a represent the length and b represent the width, then the variation can be written as length+width ∝ length-width. This can also be written as (length+width)^2 ∝ length*width, which is equivalent to the given variation. In this case, as the length and width of the rectangle increase or decrease at the same rate, the area of the rectangle (a^2+b^2) is directly proportional to its perimeter (ab).

Similar threads

  • Precalculus Mathematics Homework Help
Replies
25
Views
906
  • Precalculus Mathematics Homework Help
Replies
6
Views
1K
  • Precalculus Mathematics Homework Help
Replies
4
Views
568
  • Precalculus Mathematics Homework Help
Replies
5
Views
959
Replies
7
Views
649
  • Precalculus Mathematics Homework Help
2
Replies
40
Views
2K
  • Precalculus Mathematics Homework Help
Replies
4
Views
1K
  • Introductory Physics Homework Help
Replies
24
Views
1K
  • Precalculus Mathematics Homework Help
Replies
11
Views
1K
  • Precalculus Mathematics Homework Help
Replies
1
Views
761
Back
Top