I Question about the Pauli equation

  • I
  • Thread starter Thread starter Airton Rampim
  • Start date Start date
  • Tags Tags
    Pauli
Airton Rampim
Messages
6
Reaction score
1
I have a question about this note: https://ocw.mit.edu/courses/physics...i-spring-2018/lecture-notes/MIT8_06S18ch2.pdf
I don't understand the expression (2.2.15). The complete relation would be

$$ \pi_i \pi_j = \frac{1}{2}\left(\left[\pi_i, \pi_j\right] + \left\{\pi_i, \pi_j\right\}\right), $$
where
$$ \vec{\pi} = \vec{p} - \frac{q}{c}\vec{A} $$
in gaussian unit. How can I prove that {πi, πj} = 0?
 
Physics news on Phys.org
In (2.2.15) you don't need the anticommutator, because the ##\epsilon_{ijk}## cancels this contribution identically. The commutator is most easily calculated in the position representation, where ##\hat{\vec{p}}=-\mathrm{i} \hbar \vec{\nabla}## or ##\hat{p}_i=-\mathrm{i} \partial_i##.
 
  • Like
Likes Airton Rampim
vanhees71 said:
In (2.2.15) you don't need the anticommutator, because the ##\epsilon_{ijk}## cancels this contribution identically. The commutator is most easily calculated in the position representation, where ##\hat{\vec{p}}=-\mathrm{i} \hbar \vec{\nabla}## or ##\hat{p}_i=-\mathrm{i} \partial_i##.

Sorry, but I can't see how the Levi-Civita tensor cancels the anticommutator. I calculated the commutator using the position representation, as you mentioned. What I can't figure out is how I relate the commutator with the vector product ##\vec{\pi}\times\vec{\pi}##.
 
You have
$$(\vec{\pi} \times \vec{\pi})_k=\epsilon_{ijk} \pi_i \pi_j=\frac{1}{2} \epsilon_{ijk} (\pi_i \pi_j-\pi_j \pi_i)=\frac{1}{2} \epsilon_{ijk}[\pi_i,\pi_j],$$
because ##\epsilon_{ijk}=-\epsilon_{jik}##.
 
  • Like
Likes Airton Rampim
vanhees71 said:
You have
$$(\vec{\pi} \times \vec{\pi})_k=\epsilon_{ijk} \pi_i \pi_j=\frac{1}{2} \epsilon_{ijk} (\pi_i \pi_j-\pi_j \pi_i)=\frac{1}{2} \epsilon_{ijk}[\pi_i,\pi_j],$$
because ##\epsilon_{ijk}=-\epsilon_{jik}##.

Hmmm, so this is valid for any operator, right? Now I got it. I did in this way before, but I thought that was wrong, because it wasn't working with the ##\vec{L}## operator. But I forgot an extra ##\epsilon_{ijk}## that appears in ##\left[L_{i},L_{j}\right]##. So this gives

$$ {\displaystyle \left(\vec{L}\times\vec{L}\right)_{k}=\sum_{i,j}\frac{\epsilon_{ijk}}{2}\underbrace{\left[L_{i},L_{j}\right]}_{{\displaystyle i\hbar\sum_{k}\epsilon_{ijk}L_{k}}}=\frac{i\hbar}{2}\left(\sum_{i,j}\epsilon_{ijk}\epsilon_{ij1}L_{1}+\sum_{i,j}\epsilon_{ijk}\epsilon_{ij2}L_{2}+\sum_{i,j}\epsilon_{ijk}\epsilon_{ij3}L_{3}\right)} $$

$$ {\displaystyle =\frac{i\hbar}{2}\left[\left(\epsilon_{23k}\epsilon_{231}+\epsilon_{32k}\epsilon_{321}\right)L_{1}+\left(\epsilon_{13k}\epsilon_{132}+\epsilon_{31k}\epsilon_{312}\right)L_{2}+\left(\epsilon_{12k}\epsilon_{123}+\epsilon_{21k}\epsilon_{213}\right)L_{3}\right]} $$

$$ {\displaystyle =\frac{i\hbar}{2}\left[\left(\epsilon_{23k}-\epsilon_{32k}\right)L_{1}+\left(\epsilon_{31k}-\epsilon_{13k}\right)L_{2}+\left(\epsilon_{12k}-\epsilon_{21k}\right)L_{3}\right]} $$

$$ {\displaystyle =\frac{i\hbar}{2}\left[2\epsilon_{23k}L_{1}+2\epsilon_{31k}L_{2}+2\epsilon_{12k}L_{3}\right]} $$

$$ {\displaystyle =i\hbar\epsilon_{k23}L_{1}+i\hbar\epsilon_{1k3}L_{2}+i\hbar\epsilon_{12k}L_{3}} $$

$$ {\displaystyle =i\hbar L_{k}}, $$

which is the correct answer. It makes sense to me now. Thank you very much for your help :)
 
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
I asked a question related to a table levitating but I am going to try to be specific about my question after one of the forum mentors stated I should make my question more specific (although I'm still not sure why one couldn't have asked if a table levitating is possible according to physics). Specifically, I am interested in knowing how much justification we have for an extreme low probability thermal fluctuation that results in a "miraculous" event compared to, say, a dice roll. Does a...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
Back
Top