Reconciling basis vector operators with partial derivative operators

In summary: The tangent space at a point p in a manifold M is defined as the set of all directional derivatives at p, denoted by Tp(M). The directional derivative of a smooth function f on M is defined indirectly through a curve γ, and can be written as d(f∘γ)/du |_p. To define the basis of Tp(M), coordinate curves passing through p are considered, and the directional derivative associated with each curve is equal to the partial derivative of f with respect to the corresponding coordinate. However, there is confusion in the notation and definition of the partial derivative, as the source uses the LHS of the equation as the definition while the standard definition is the RHS.
  • #1
Shirish
244
32
Ref. 'Core Principles of Special and General Relativity' by Luscombe. Apologies in advance for the super-long question, but it's necessary to show my thought process.

Let ##\gamma:I\to M## be a smooth curve from an open interval ##I\subset\mathbb{R}## to a manifold ##M##, and let ##f:M\to\mathbb{R}## be smooth. We denote the generic argument of ##\gamma## by ##u##, so ##\gamma(u)\in M## for any ##u\in I##. The set of all smooth functions from ##M\to\mathbb{R}## at ##p## is denoted by ##\mathcal{F}_p## (so that ##f\in\mathcal{F}_p##). The definition of tangent space elements is given as:
The tangent space at ##p\in M##, the set of all directional derivatives at ##p##, is denoted by ##T_p(M)##. For fixed ##\gamma##, the directional derivative ##\mathbf{t}_{\gamma}(f)\equiv d(f\circ\gamma)/du\ |_p## is an operator that maps functions ##f\in\mathcal{F}_p## onto numbers, ##\mathbf{t}_{\gamma}:\mathcal{F}_p\to\mathbb{R}##.
The directional derivative on ##M## was defined indirectly via a curve ##\gamma## as follows:
[/QUOTE]Let ##p\in M## be such that ##\gamma(c)=p## for ##c\in I\subset\mathbb{R}##. For a smooth function ##f## on ##M##, the composite map ##f\circ\gamma:\mathbb{R}\to\mathbb{R}## is a function on ##\mathbb{R}##. The directional derivative on ##M##,$$\frac{d(f\circ\gamma)}{du}\bigg|_c\equiv\lim_{s\to 0}\frac{1}{s}[(f\circ\gamma)(c+s)-(f\circ\gamma)(c)]$$
[/QUOTE]
Now to define the basis of ##T_p(M)##, we consider coordinate curves ##\gamma^i## passing through ##p\in M##. Let ##p##, with chart ##(U,\phi)##, have the coordinates ##(x^1(p),\ldots,x^n(p))##. The coordinate curves are specified by ##\phi^{-1}:\mathbb{R}\to M## as follows:$$\gamma^i(u)\equiv \phi^{-1}(x^1(p),\ldots,x^{i-1}(p),x^i(p)+u,x^{i+1}(p),\ldots,x^n(p))$$
Then it's written:
The directional derivative associated with ##\gamma^i## at ##p## defines the partial derivative of ##f## with respect to ##x^i##, $$\frac{d(f\circ\gamma^i)}{du}\ \bigg|_{u=0}=\frac{\partial f}{\partial x^i}\ \bigg|_p$$
And this last part is pretty confusing. I evaluated the LHS as follows:$$\lim_{s\to 0}\frac{1}{s}[(f\circ\phi^{-1})(x^1(p),\ldots,x^i(p)+s,\ldots,x^n(p))-(f\circ\phi^{-1})(x^1(p),\ldots,x^i(p),\ldots,x^n(p))]$$ $$=\frac{\partial (f\circ\phi^{-1})}{\partial x^i}\ \bigg|_{\phi(p)}$$
which is not the same as the RHS in the quoted equation, so I don't know where that came from.

Another doubt is how do I reconcile the basis element of ##T_p(M)## with the differential operator ##\partial/\partial x^i##? As per the definition ##\mathbf{t}_{\gamma}(f)\equiv d(f\circ\gamma)/du\ |_p##, which means $$\mathbf{t}_{\gamma^i}(f)= d(f\circ\gamma^i)/du\ |_p = d(f\circ\gamma^i)/du\ |_{u=0}$$
I showed above that ##d(f\circ\gamma^i)/du\ |_{u=0}## is equal to ##\partial (f\circ\phi^{-1})/\partial x^i\ |_{\phi(p)}##. So finally $$\mathbf{t}_{\gamma^i}(f)=\partial (f\circ\phi^{-1})/\partial x^i\ |_{\phi(p)}$$
I'm pretty sure (at least intuitively) that ##\{\mathbf{t}_{\gamma^i}\}## (the subscript reads ##\gamma^i##) forms the basis of ##T_p(M)##. I can only claim that ##\mathbf{t}_{\gamma^i}=\partial/\partial x^i## when ##\mathbf{t}_{\gamma^i}(f)=\partial f/\partial x^i## for all ##f\in\mathcal{F}_p##. From the above equation, I have no way to isolate ##f## on the RHS, so with what sorcery can I show that ##\mathbf{t}_{\gamma^i}(f)=\partial f/\partial x^i## for all ##f\in\mathcal{F}_p##?
 
Physics news on Phys.org
  • #2
Shirish said:
$$=\frac{\partial (f\circ\phi^{-1})}{\partial x^i}\ \bigg|_{\phi(p)}$$
which is not the same as the RHS in the quoted equation, so I don't know where that came from.

What is your definition of ##\frac{\partial f}{\partial x^i}## if not the above?
 
  • Like
Likes George Jones
  • #3
Infrared said:
What is your definition of ∂f∂xi if not the above?
Sorry, but I'm not sure that I follow - I'm completely new to the subject. Do you mean there's some notation convention that I'm not catching on to? Would be grateful if you could explain in detail because what's obvious to you (being well-versed in the subject) may not be obvious to me at all.
 
  • #4
In order for the statement you quoted to be true or false, you must have defined the expression ##\frac{\partial f}{\partial x^i}.## What is the definition of ##\frac{\partial f}{\partial x^i}## that you're using?

I've usually seen ##\frac{\partial f}{\partial x^i}## ##\bf{defined}## to be ##\frac{\partial (f\circ \phi^{-1})}{\partial x^i}## (and the RHS makes sense because ##f\circ\phi^{-1}## is a function defined on ##\mathbb{R}^n##, where we already know how to take partial derivatives), in which case there's nothing left to prove. If you have a different definition of what ##\frac{\partial f}{\partial x^i}## means for a smooth function ##f:M\to\mathbb{R}##, then you should let us know what it is.

Edit: Okay, it looks like your source is using the LHS as the definition of the partial derivative of a function on a manifold. Can you explain why you think this is inconsistent with ##\frac{\partial f}{\partial x^i}=\frac{\partial (f\circ \phi^{-1})}{\partial x^i}##?
 
Last edited:
  • Like
Likes Shirish
  • #5
Infrared said:
Edit: Okay, it looks like your source is using the LHS as the definition of the partial derivative of a function on a manifold. Can you explain why you think this is inconsistent with ##\frac{\partial f}{\partial x^i}=\frac{\partial (f\circ \phi^{-1})}{\partial x^i}##?
I'm not sure about how it'd be inconsistent. But what I did understand from your answer is that since we can't directly calculate the derivative of ##f## (because of its domain), we use some sort of a "proxy function". For example, if we want to differentiate ##f## w.r.t. some parameter ##u## of some curve, we can't directly do it but have to instead calculate it via the derivative of ##f\circ\gamma## w.r.t. ##u##, since the domain of ##f\circ\gamma## is an open set in ##\mathbb{R}##.

Similarly ##\partial f/\partial x^i## can't be directly calculated because ##x^i##'s lie in ##\mathbb{R}^n## while ##f## is defined on ##M##. So we again calculate it as the derivative of ##f\circ\phi^{-1}## w.r.t. ##x^i##, since the domain of ##f\circ\phi^{-1}## is an open set in ##\mathbb{R}^n##.

So it's natural to define derivatives of ##f## implicitly via their "proxy functions". Hope most of my intuition is correct.
 

1. What is the difference between basis vector operators and partial derivative operators?

Basis vector operators are used to describe the direction and magnitude of a vector in a specific coordinate system. They are represented by unit vectors in the x, y, and z directions. On the other hand, partial derivative operators are used to calculate the rate of change of a function with respect to a specific variable. They are represented by the symbol ∂ and can be applied to functions of multiple variables.

2. How do you reconcile basis vector operators with partial derivative operators?

The reconciliation between basis vector operators and partial derivative operators lies in the concept of the gradient. The gradient of a function is a vector that points in the direction of the steepest increase of the function. It can be calculated using partial derivative operators in the direction of each basis vector. This means that the basis vector operators and partial derivative operators are essentially working together to describe the same vector in different ways.

3. Can basis vector operators and partial derivative operators be used interchangeably?

No, basis vector operators and partial derivative operators cannot be used interchangeably. While they both involve vectors and derivatives, they serve different purposes. Basis vector operators are used to describe the direction and magnitude of a vector, while partial derivative operators are used to calculate the rate of change of a function. However, they can be reconciled through the concept of the gradient.

4. What are some applications of reconciling basis vector operators with partial derivative operators?

Reconciling basis vector operators with partial derivative operators is important in many fields of science and engineering, such as physics, mathematics, and computer science. It is used in vector calculus to solve problems involving vector fields and their derivatives. It is also used in the study of fluid mechanics, electromagnetism, and quantum mechanics.

5. Are there any limitations to reconciling basis vector operators with partial derivative operators?

One limitation of reconciling basis vector operators with partial derivative operators is that it only applies to Cartesian coordinate systems. This means that it may not be applicable in other coordinate systems, such as polar or spherical coordinates. Additionally, the concept of the gradient may not be applicable to all types of functions, such as discontinuous or non-differentiable functions.

Similar threads

  • Differential Geometry
Replies
2
Views
593
Replies
9
Views
3K
  • Differential Geometry
Replies
12
Views
3K
  • Differential Geometry
Replies
7
Views
2K
Replies
6
Views
934
Replies
4
Views
1K
Replies
4
Views
2K
Replies
5
Views
1K
Replies
6
Views
359
  • Differential Geometry
Replies
9
Views
421
Back
Top