Trouble with metric. Holonomic basis and the normalised basis

  • #1
GR191511
76
6
TL;DR Summary
about metric
##df=\frac {\partial f}{\partial r} dr+\frac {\partial f}{\partial \theta}d\theta\quad
\nabla f=\frac{\partial f}{\partial r}\vec{e_r} +\frac{1}{r}\frac{\partial f}{\partial \theta }\vec{e_\theta }##
On the other hand ## g_{rr}=1\:g_{r\theta}=0\:g_{\theta r}=0\;g_{\theta\theta}=r^2\;##So According to##v_2=v^{\alpha} g_{\alpha 2}\;then\; (df)_{\theta}=\frac{\partial f}{\partial r}*0+\frac{1}{r}\frac{\partial f}{\partial \theta }*r^2=r\frac{\partial f}{\partial \theta }\neq\frac{\partial f}{\partial \theta }##Where have I gone wrong?
 
Last edited:
Physics news on Phys.org
  • #2
Don't get confused between the holonomic basis ##(\frac{\partial}{\partial r}, \frac{\partial}{\partial \theta})## and the normalised basis ##(\frac{\partial}{\partial r}, \frac{1}{r} \frac{\partial}{\partial \theta})##, or similarly the holonomic covector basis ##(dr, d\theta)## and the normalised covector basis ##(dr, r d\theta)##. If you want to use a normalised basis then remember the metric will be ##g_{\hat{r} \hat{r}} = g_{\hat{\theta} \hat{\theta}} = 1##.
 
  • Like
Likes GR191511, jedishrfu and berkeman
  • #3
ergospherical said:
Don't get confused between the holonomic basis ##(\frac{\partial}{\partial r}, \frac{\partial}{\partial \theta})## and the normalised basis ##(\frac{\partial}{\partial r}, \frac{1}{r} \frac{\partial}{\partial \theta})##, or similarly the holonomic covector basis ##(dr, d\theta)## and the normalised covector basis ##(dr, r d\theta)##. If you want to use a normalised basis then remember the metric will be ##g_{\hat{r} \hat{r}} = g_{\hat{\theta} \hat{\theta}} = 1##.
Thank you! I tried and I found ##g_{\hat{\theta}\hat{\theta}}=1## apply to a transition from the normalised basis ##(\frac{\partial}{\partial r}, \frac{1}{r} \frac{\partial}{\partial \theta})## to the holonomic covertor basis ##(dr, d\theta)## ...But when can I use ##g_{\hat{\theta}\hat{\theta}}=r^2## ?
 
  • #4
In the holonomic basis ##g_{\theta \theta} = r^2##. (I used the hat on ##\hat{\theta}## to denote components in the normalised basis, as opposed to no hat for components in the holonomic basis).
 
  • Like
Likes GR191511
  • #5
ergospherical said:
In the holonomic basis ##g_{\theta \theta} = r^2##. (I used the hat on ##\hat{\theta}## to denote components in the normalised basis, as opposed to no hat for components in the holonomic basis).
Thanks! Does ##g_{\theta\theta}=r^2## apply to any transition?from the holonomic basis to the normalised covector basis? I have already checked,it doesn't.
 
  • #6
##df = \frac{\partial f}{\partial r} dr + \frac{\partial f}{\partial \theta} d\theta \equiv (df)_r dr + (df)_{\theta} d\theta##
Equivalently
##df = \frac{\partial f}{\partial r} dr + \frac{1}{r} \frac{\partial f}{\partial \theta} (r d\theta) \equiv (df)_{\hat{r}} dr + (df)_{\hat{\theta}} (r d\theta)##
i.e. ##(df)_{\hat{\theta}} = \frac{1}{r} \frac{\partial f}{\partial \theta}## in the normalised basis.

Why are the basis vectors normalised by a factor of ##r##? Consider ##g(\frac{1}{r} \frac{\partial}{\partial \theta}, \frac{1}{r} \frac{\partial}{\partial \theta}) = \frac{1}{r^2} g(\frac{\partial}{\partial \theta}, \frac{\partial}{\partial \theta}) = \frac{1}{r^2} g_{\theta \theta} = \frac{1}{r^2} r^2 = 1##, so this is the correct normalisation.
Meanwhile the corresponding basis covector is ##rd\theta## because ##r d\theta (\frac{1}{r} \frac{\partial}{\partial \theta}) = d\theta(\frac{\partial}{\partial \theta}) = 1##.
 
  • Like
Likes GR191511
  • #7
ergospherical said:
##df = \frac{\partial f}{\partial r} dr + \frac{\partial f}{\partial \theta} d\theta \equiv (df)_r dr + (df)_{\theta} d\theta##
Equivalently
##df = \frac{\partial f}{\partial r} dr + \frac{1}{r} \frac{\partial f}{\partial \theta} (r d\theta) \equiv (df)_{\hat{r}} dr + (df)_{\hat{\theta}} (r d\theta)##
i.e. ##(df)_{\hat{\theta}} = \frac{1}{r} \frac{\partial f}{\partial \theta}## in the normalised basis.

Why are the basis vectors normalised by a factor of ##r##? Consider ##g(\frac{1}{r} \frac{\partial}{\partial \theta}, \frac{1}{r} \frac{\partial}{\partial \theta}) = \frac{1}{r^2} g(\frac{\partial}{\partial \theta}, \frac{\partial}{\partial \theta}) = \frac{1}{r^2} g_{\theta \theta} = \frac{1}{r^2} r^2 = 1##, so this is the correct normalisation.
Meanwhile the corresponding basis covector is ##rd\theta## because ##r d\theta (\frac{1}{r} \frac{\partial}{\partial \theta}) = d\theta(\frac{\partial}{\partial \theta}) =
Thank you!
##df=\frac {\partial f} {\partial r}dr+\frac{1}{r}\frac {\partial f} {\partial \theta}rd\theta## and
##(dr,rd\theta ) \begin{pmatrix}
1 & 0 \\
0 & 1 \\
\end{pmatrix} \begin{pmatrix}
dr \\
rd\theta \\
\end{pmatrix}\Rightarrow g_{rr}=g_{\theta\theta}=g^{rr}=g^{\theta\theta}=1\Rightarrow##
##(\nabla f)^\theta=\frac{1}{r}\frac {\partial f} {\partial \theta}*g^{\theta\theta}=\frac{1}{r}\frac {\partial f} {\partial \theta}\;and\;(\nabla f)^r=\frac {\partial f} {\partial r}##
##\Rightarrow \nabla f=\frac {\partial f} {\partial r}\vec e_r+\frac{1}{r}\frac {\partial f} {\partial \theta}(\vec e_\theta\;or\;\frac{\vec e_\theta}{r})?if\;it\;is\;\frac{\vec e_\theta}{r}\;then##
##\nabla f=\frac {\partial f} {\partial r}\vec e_r+\frac{1}{r^2}\frac {\partial f} {\partial \theta}\vec e_\theta## it is wrong.But if it is##\;\vec e_\theta##...the##\;\vec e_\theta## is not a dual basis vector of##\;rd\theta##.
 

What is a metric in the context of differential geometry?

A metric in differential geometry is a function that defines the distance between any two points in a space. It is a critical tool used to study the geometry of surfaces and higher-dimensional manifolds. The metric provides a way to measure lengths of curves, angles between vectors, and more, essentially defining the geometric properties of the space.

What is a holonomic basis?

A holonomic basis refers to a set of basis vectors that are derived from coordinate differentials. In simpler terms, in a given coordinate system, the basis vectors are the partial derivatives with respect to each coordinate. These vectors are tangent to the coordinate lines, making them particularly useful in calculations involving the metric tensor in that coordinate system.

What is a normalized basis?

A normalized basis (or orthonormal basis) is a set of basis vectors that are both orthogonal (perpendicular to each other) and of unit length. In the context of a metric, normalizing the basis involves adjusting the lengths of the basis vectors so that they conform to the conditions of orthogonality and unit length according to the metric. This is particularly useful for simplifying calculations and expressions in both physics and mathematics.

How does the metric relate to the holonomic and normalized bases?

The metric tensor can be expressed differently depending on the choice of basis. In a holonomic basis, the metric tensor components are generally functions of the coordinates, reflecting the possibly curved nature of the space. When transforming to a normalized basis, the metric tensor typically becomes simpler, often diagonal, with entries of +1 or -1, reflecting the orthonormal nature of the basis. This simplification can make many theoretical and practical problems easier to handle.

Why is it important to consider different bases like holonomic and normalized in differential geometry?

Choosing the appropriate basis is crucial in differential geometry because it can significantly simplify the mathematical expressions and the computations involved. A holonomic basis is often natural and intuitive as it aligns with the coordinate system used. However, calculations involving angles and lengths are generally easier in a normalized basis due to its orthonormal properties. Thus, understanding both bases and their interrelations through the metric tensor allows for more flexible and effective problem-solving in geometry and physics.

Similar threads

Replies
1
Views
1K
  • Differential Geometry
Replies
12
Views
3K
  • Differential Geometry
Replies
2
Views
591
Replies
4
Views
1K
  • Differential Geometry
Replies
1
Views
988
  • Differential Geometry
Replies
7
Views
2K
  • Differential Geometry
Replies
11
Views
3K
  • Special and General Relativity
Replies
11
Views
1K
  • Advanced Physics Homework Help
Replies
11
Views
1K
Replies
6
Views
358
Back
Top