System, potential energy, and nonconservative forces: The whole story

In summary, when dealing with a general mechanical system, it is common to split the specified forces into external and internal forces. The external forces are usually conservative and can be represented by a potential function, while the internal forces are conservative if they depend only on the inter-particle separation and can also be represented by a potential function. The overall potential function of the system is then the sum of the external and internal potential functions. Non-conservative specified forces can also be present in the system, in which case their work is equal to the change in the sum of the potential and kinetic energies of the system. However, this approach is limited to cases where the external forces are derived from background potentials that do not depend on the co-ordinates of the
  • #1
ergospherical
966
1,276
[Mentors' note: This thread was split off from https://www.physicsforums.com/threads/system-potential-energy-and-nonconservative-forces.1009237/]

fog37 said:
However, I think that potential energy can only be the energy of the SYSTEM and not between the system and something else.
This is not a particularly helpful way to think about things;

For a general mechanical system, you usually split the specified forces into external specified forces ##\mathbf{F}_a## and internal specified forces ##\mathbf{G}_{ab}## (indices enumerate particles). If the external forces are conservative, ##\mathbf{F}_a = - \nabla \phi_a##, then\begin{align*}
\sum_a \int_1^2 \mathbf{F}_a \cdot \mathbf{v}_a dt = \sum_a (\phi_a(1) - \phi_a(2)) = \Phi(1) - \Phi(2)
\end{align*}and ##\Phi \equiv \displaystyle{\sum_a} \phi_a## is the external potential function. If the internal forces are conservative, that is, if ##\mathbf{G}_{ab} = g_{ab}(r_{ab}) \hat{\mathbf{r}}_{ab}## where ##\mathbf{r}_{ab} = \mathbf{r}_a - \mathbf{r}_b## and the function ##g_{ab}(r_{ab})## depends only on the inter-particle separation, then using ##\mathbf{G}_{ab} + \mathbf{G}_{ba} = \mathbf{0}## you have\begin{align*}
\sum_a \sum_{b \neq a} \int_1^2 \mathbf{G}_{ab} \cdot \mathbf{v}_a dt &=\sum_a \sum_{b>a} \int_{1}^2 (\mathbf{G}_{ab} \cdot \mathbf{v}_a + \mathbf{G}_{ba} \cdot \mathbf{v}_b)dt \\
&= \sum_a \sum_{b>a} \int_{1}^2 (\mathbf{G}_{ab} \cdot (\mathbf{v}_a - \cdot \mathbf{v}_b) )dt
\end{align*}Work on the term \begin{align*}
\mathbf{G}_{ab} \cdot (\mathbf{v}_a - \mathbf{v}_b) &= \dfrac{g_{ab}(r_{ab})}{r_{ab}} \mathbf{r}_{ab} \cdot \dfrac{d\mathbf{r}_{ab}}{dt} \\
&=\dfrac{1}{2} \dfrac{g_{ab}(r_{ab})}{r_{ab}} \dfrac{d}{dt}(r_{ab}^2) \\
&= g_{ab}(r_{ab}) \dfrac{dr_{ab}}{dt}
\end{align*}Then the integral becomes\begin{align*}
\sum_a \sum_{b>a} \int_1^2 g_{ab}(r_{ab}) \dfrac{dr_{ab}}{dt} dt &= \sum_a \int_1^2 g_{ab}(r_{ab}) dr_{ab} \\
&= \sum_a \sum_{b>a} [\psi_{ab}(r_{ab}(1)) - \psi_{ab}(r_{ab}(2)) ] \\
&= \Psi(1) - \Psi(2)
\end{align*}where the function ##\psi_{ab}## is such that ##g_{ab} = -\dfrac{d\psi_{ab}}{dr_{ab}}##, and where ##\Psi## is the internal potential function. The sum ##U = \Phi + \Psi## is then the overall potential function of the system, taking into account both the external and internal conservative specified forces.

If you have some non-conservative specified forces ##\mathbf{H}_a##, then\begin{align*}
\sum_a \int_1^2 (\mathbf{F}_a + \mathbf{H}_a) \cdot \mathbf{v}_a dt + \sum_a \sum_{b \neq a} \int_1^2 \mathbf{G}_{ab} \cdot \mathbf{v}_a dt&= \sum_a \int_1^2 m_a\ddot{\mathbf{r}}_a \cdot \dot{\mathbf{r}}_a dt \\
&= \sum_a \int_1^2 m_a \dfrac{1}{2} \dfrac{d}{dt} (v_a^2) dt \\
&= \sum_a \dfrac{1}{2}m_a(v_a(2)^2 - v_a(1)^2)
\end{align*}so that\begin{align*}-\Delta(\Phi + \Psi) + \sum_a \int_1^2 \mathbf{H}_a \cdot \mathbf{v}_a dt &= \Delta T \\
\implies \sum_a \int_1^2 \mathbf{H}_a \cdot \mathbf{v}_a dt &= \Delta (\Phi + \Psi + T) = \Delta E
\end{align*}Here ##\displaystyle{\sum_a \int_1^2 \mathbf{H}_a \cdot \mathbf{v}_a dt}## is the work done by any other non-conservative specified forces on the system.
 
Last edited by a moderator:
  • Like
Likes fog37, weirdoguy and Dale
Physics news on Phys.org
  • #2
ergospherical said:
[Mentors' note: This thread was split off from https://www.physicsforums.com/threads/system-potential-energy-and-nonconservative-forces.1009237/]This is not a particularly helpful way to think about things;

For a general mechanical system, you usually split the specified forces into external specified forces ##\mathbf{F}_a## and internal specified forces ##\mathbf{G}_{ab}##

<< Rest of quote snipped by the Mentors for brevity>>
Hello ergospherical.

Thanks for this post. A little over my head. So, I guess I am incorrect to think that a force that is external (not internal to the system) cannot be conservative. For example, if the system is an object and planet Earth is not included inside the system, we can still define the potential energy between the system and planet Earth even if Earth is outside of the system...

Thank you!
 
Last edited by a moderator:
  • #3
In a restricted sense. The assumption is that the external forces are derived from background potentials which depend only on time and not on the co-ordinates of the particles in your chosen system.

If the system is "large" enough to have an influence on the source of the background potential, then this approximation no longer holds and you can no longer consider the system & source to be independent of each other.
 

1. What is a system in terms of potential energy and nonconservative forces?

A system is a group of objects or particles that interact with each other and can exchange energy. In the context of potential energy and nonconservative forces, a system refers to the specific objects or particles that are being studied and the energy associated with their interactions.

2. How is potential energy related to nonconservative forces?

Potential energy is a form of energy that is stored within a system and can be converted into other forms of energy, such as kinetic energy. Nonconservative forces, such as friction or air resistance, can act on a system and convert potential energy into other forms of energy, causing the system to lose energy.

3. What are some examples of nonconservative forces?

Some common examples of nonconservative forces include friction, air resistance, and drag. These forces act against the motion of an object and can cause energy to be lost from a system.

4. How does the conservation of energy apply to systems with nonconservative forces?

The conservation of energy states that energy cannot be created or destroyed, only transferred or converted from one form to another. In systems with nonconservative forces, energy can be lost due to the work done by these forces, but the total energy of the system remains constant.

5. How do scientists study and analyze systems, potential energy, and nonconservative forces?

Scientists use various mathematical and physical models to study and analyze systems, potential energy, and nonconservative forces. They may also conduct experiments and collect data to better understand the behavior of these systems and the effects of nonconservative forces on them.

Similar threads

  • Special and General Relativity
Replies
1
Views
620
  • Classical Physics
Replies
9
Views
1K
  • Introductory Physics Homework Help
Replies
15
Views
294
  • Classical Physics
Replies
3
Views
1K
  • Special and General Relativity
Replies
4
Views
289
Replies
30
Views
2K
  • Advanced Physics Homework Help
Replies
9
Views
2K
Replies
2
Views
706
  • Calculus
Replies
4
Views
1K
  • Special and General Relativity
Replies
16
Views
2K
Back
Top