What about if I apply HUP to myself?

  • B
  • Thread starter dyn
  • Start date
  • Tags
    Apply Hup
In summary: The more accurately you know your position, the less accurately you can know your momentum. This is a fundamental principle of quantum mechanics, and it applies to all particles, including yourself.
  • #1
dyn
773
61
Hi
HUP states that if i know the exact position of a particle there must be infinite uncertainty in its momentum. What about if i apply HUP to myself ? Is it not possible for me to know that i am standing at a specified position and not moving ; implying zero uncertainty in both position and momentum ?
Thanks
 
  • Sad
Likes Vanadium 50 and PeroK
Physics news on Phys.org
  • #2
First of all, the HUP is not applicable in any practical sense to macro objects but rather only to quantum objects. Second, it is not helpful to talk about single measurements. The real value of the HUP in distinguishing classical physics from quantum physics is this:

In classical physics, if you can set up an experiment EXACTLY the same every time then the results will be the same every time. In quantum physics, if you set up an experiment EXACTLY the same every time, the results will NOT be the same every time but will in fact have a statistical distribution described by the HUP.
 
Last edited:
  • Like
Likes dyn
  • #3
dyn said:
Is it not possible for me to know that i am standing at a specified position and not moving ; implying zero uncertainty in both position and momentum ?
No. But your mass is so large that you can have extremely small uncertainty in both your position and your velocity (which is how you actually judge how fast you are moving) while still not violating the HUP. In fact, in a practical sense there are other sources of uncertainty in your measurements that are far larger than the uncertainties imposed by the HUP, which is why, as @phinds says, the HUP is useless in a practical sense for macroscopic objects.
 
  • Like
Likes vanhees71 and dyn
  • #4
dyn said:
Hi
HUP states that if i know the exact position of a particle there must be infinite uncertainty in its momentum. What about if i apply HUP to myself ? Is it not possible for me to know that i am standing at a specified position and not moving ; implying zero uncertainty in both position and momentum ?
Thanks
You are not a particle, you are a collection of about ##10^{27}## particles. Each one of those particles has some uncertainty as to position and momentum, as required by the uncertainty principle.

It’s worth taking a moment to calculate the actual numerical values of the uncertainty in the position and moment of an electron confined within the volume of a water molecule. You’ll see how you can evade the uncertainty principle and you’ll feel a lot better about being made of uncertain particles.
 
  • Like
Likes vanhees71
  • #5
Nugatory said:
You are not a particle, you are a collection of about ##10^{27}## particles. Each one of those particles has some uncertainty as to position and momentum, as required by the uncertainty principle.

That argument wouldn't apply if the mass of approx. 100kg consisted of a single particle
 
Last edited by a moderator:
  • #6
dyn said:
HUP states that if i know the exact position of a particle
then you say "apply HUP to myself"

Are you a particle?
 
  • #7
dyn said:
That argument wouldn't apply if the mass of approx. 100kg consisted of a single particle
Yes, and in that case we would apply PeterDonis’s answer in post #3.

it’s still worth taking a moment to do the calculation and get some actual numeric values out. Say your hypothetical 100kg particle is prepared in a quantum state such that the uncertainty in its position is about one atomic diameter.…. What is the uncertainty in its momentum and hence its speed?
 
Last edited:
  • Like
Likes PeroK
  • #8
It sounds like you aren't asking a question so much as making an argument.

The first thng you should do is plug some numbers in. Keep in mind you can shift your weight and move around a bit. Do you know your position to a centimeter? A millimeter? A micron? A nanometer? Same with momentum./

Now multiply those numbers together. Did you violate the HUP?
 
  • #9
A street performer at Covent Garden violates the HUP, and several other laws of physics:

1672150146571.png
 
  • Like
Likes PhDeezNutz
  • #10
We did this at school. Rolled a cricket ball through a doorway and worked out the possible velocity uncertainty. Unfortunately a fly sneezed on the other side of the world and the shockwaves ruined our data collection.
 
  • Haha
Likes DennisN, jtbell, vanhees71 and 1 other person
  • #11
dyn said:
Hi
HUP states that if i know the exact position of a particle there must be infinite uncertainty in its momentum. What about if i apply HUP to myself ? Is it not possible for me to know that i am standing at a specified position and not moving ; implying zero uncertainty in both position and momentum ?
Thanks
You need to figure out exactly how you are going to perform these measurements that assert a perfect measurement of zero velocity and perfect placement in position. What you will find is that there is no way to make the exact measurements you claim.

It is indeed not possible for you to know that you are standing at a specified position and not moving beyond the limit of the HUP.
 
  • Like
Likes vanhees71, DrChinese, dyn and 1 other person

1. What is HUP?

HUP stands for Heisenberg's Uncertainty Principle, which is a fundamental principle in quantum mechanics that states that it is impossible to simultaneously know the exact position and momentum of a particle.

2. How does HUP apply to myself?

HUP can be applied to any system, including the human body. This means that there is a limit to how precisely we can measure both the position and momentum of particles within our own bodies.

3. What are the implications of applying HUP to myself?

The implications of HUP applying to ourselves means that there is a fundamental limit to how much we can know about the particles within our own bodies. This can have implications for fields such as medicine and biology, where precise measurements are crucial.

4. Can HUP be violated in any way?

No, HUP is a fundamental principle in quantum mechanics and has been extensively tested and proven to be true. It is a cornerstone of our understanding of the behavior of particles at a subatomic level.

5. How does HUP relate to other principles in physics?

HUP is closely related to other principles in physics, such as the uncertainty principle in classical mechanics and the complementarity principle in quantum mechanics. It also has connections to other principles such as the wave-particle duality and the observer effect.

Similar threads

  • Quantum Physics
Replies
4
Views
673
Replies
6
Views
901
Replies
12
Views
845
  • Quantum Physics
Replies
6
Views
1K
  • Quantum Interpretations and Foundations
Replies
2
Views
2K
  • Quantum Physics
Replies
17
Views
1K
Replies
52
Views
4K
Replies
3
Views
936
Replies
1
Views
822
Replies
8
Views
2K
Back
Top