What is the definition of Engine Load

In summary: Etc.In summary, engine load is a measure of the torque output of an internal combustion engine, which is closely related to the amount of air being burnt in the combustion chamber. It can be calculated using various equations, including one used in OBD regulations, and is often correlated with engine vacuum. The engine load can also be affected by factors such as engine speed, throttle position, and transmission gearing.
  • #1
thender
39
0
What is the definition of "Engine Load"

A lot of things I have read make reference to engine load but it is not clear if there are different meanings.

One definition seems to be that the engine load is the amount of air flowing through the engine as a percentage of the theoretical maximum.

So if I had a vehicle running in neutral with the throttle wide open I would be very close to the maximum of that type of "engine load". But the engine wouldn't really be doing any work. So if work was the type of load that we are talking about then it's different.

Like towing a trailer up a grade is another type of engine load, and it has more to do with how much resistance there is to turning the crankshaft.

I think perhaps the actual power output is what's different, the amount of WORK being performed.

And from what I can tell running an engine under a heavy work load produces different conditions like higher cylinder temperatures and peak pressures.

Engine Load is an OBD-II standard parameter but I still don't understand how to interpret it properly.

I almost forgot to mention it but the amount of vacuum in the intake manifold is often said to indicate the engine loading. I'm not really sure why. From what I know manifold vacuum is affected by the engine speed, the atmospheric pressure, and the throttle position mainly (in naturally aspirated engines).

High vacuum may indicate a high rate of air consumption by the engine, or high restriction from the throttle. Low vacuum could indicate lower consumption by the engine or highly open throttle conditions.

Vacuum is complicated by the engine characteristics that affect cylinder filling like valve timing lift and duration, engine speed, tuned ports etc.

I see that these things are all correlated to the concept of engine load but don't fully understand the rationale. Fuel pressure regulators are controlled using manifold vacuum for example.

One other thing, engine load seems closely tied to how the engine utilized, in a passenger car the engine probably operates at very light loads the vast majority of the time, putting out only enough power to maintain the current speed. Load would be higher when accelerating the vehicle quickly such as driving onto a highway via an on ramp, but would generally be low, with a correspondingly low throttle opening. Heavier vehicles towing heavy loads may operate at higher sustained engine loading. Lastly from what I've heard aircraft engines typically operate at a high load with little fluctuation.

It strikes me that the transmission gearing is as significant the throttle position and other items when considering engine load and total power output.

Thanks,
-Andrew
 
Last edited:
Engineering news on Phys.org
  • #2
"One definition seems to be that the engine load is the amount of air flowing through the engine as a percentage of the theoretical maximum."

I don't know where you got that definition of engine load. The statement is, however, the definition of the volumetric efficiency of an engine.

When running, an engine is always producing torque, and power is proportional to the amount of torque produced times the rotational speed of the engine. Whether this power is actually used to move the vehicle or tow something, for instance, is another matter entirely.

"It strikes me that the transmission gearing is as significant the throttle position and other items when considering engine load and total power output."

All that transmission gearing does is reduce the output RPM from the engine to the wheels while also multiplying the torque from the engine. Except for losses in the transmission, the engine power output remains roughly the same, for manual gearboxes. Automatic transmissions take some of the engine power to operate the hydraulics, separate from whatever gear ratios are sued.

Aircraft engines see their heaviest loading on takeoff. You are trying to accelerate a fully laden aircraft from stop to takeoff speed over a limited distance. Once the aircraft has taken off and climbed to its cruising altitude, then the engine is operating at a somewhat reduced load.
 
  • #3
"I don't know where you got that definition of engine load. The statement is, however, the definition of the volumetric efficiency of an engine."

From http://obdcon.sourceforge.net/2010/06/about-pid-calculated-load-value/

The OBD regulations previously defined CLV as:
(current airflow / peak airflow @sea level) * (BARO @ sea level / BARO) * 100%

LOAD_PCT = [current airflow] / [(peak airflow at WOT@STP as a function of rpm) * (BARO/29.92) * SQRT(298/(AAT+273))]

And from the EPA, page six:
http://www.epa.gov/ttnchie1/conference/ei20/session8/aalessandrini_pres.pdf

and others.

"All that transmission gearing does is reduce the output RPM from the engine to the wheels while also multiplying the torque from the engine."

The volumetric efficiency of the engine is closely related to the engine speed, so wouldn't changing the engine speed have an impact on the airflow through the engine just like changing throttle position?
 
  • #4
The engine load is the torque output of the engine.

An internal combustion engine is - approximately - a constant torque motor, meaning it can produce the same maximum torque at any rpm. The fact that it happens at a rpm or another, dictates how much power it produces.

Torque is proportional to the amount of force put on the piston, which is proportional to the amount of air being burnt in the combustion chamber, which is why you can relate the engine load to the quantity of air going into the engine, knowing the maximum amount of air that go in at a particular rpm.

With the equation found on page 6 of your EPA document, it is clearly written about the OBD parameter:
Indicated percent of peak available torque;

It also says:
Linearly correlated with engine vacuum;

If you measure vacuum in the intake manifold, you will have high values when the throttle is closed. As the throttle opens, the vacuum will lower (meaning the pressure comes closer to the atmospheric pressure) as the pressure from the intake and the outside atmosphere tends to equalized. When this condition is reached, then there is no restriction to the airflow and maximum torque is achieved at that particular rpm (No matter how wide the throttle is opened, so the throttle angle is not as good of a measurement).

Of course, ODB parameter and vacuum does not give you the torque output of the engine, but knowing the peak torque is practically constant throughout the rpm range, you can find a good approximation of the torque output of an engine with these parameters. Multiply this torque with the rpm and you get the power output as well.
 

What is the definition of Engine Load?

Engine Load refers to the amount of stress or force that is placed on an engine while it is running. It is typically measured in a percentage, with 100% representing the maximum capacity of the engine.

How is Engine Load calculated?

Engine Load is calculated by measuring the amount of air that is entering the engine through the intake manifold and comparing it to the amount of fuel that is being injected into the engine. This ratio is then converted into a percentage to determine the engine's load.

What factors can affect Engine Load?

There are several factors that can affect engine load, including the speed of the engine, the type of fuel being used, the size and design of the engine, and the load placed on the engine by the vehicle or equipment it is powering.

Why is Engine Load important to monitor?

Monitoring engine load is important because it can provide valuable information about the performance and efficiency of an engine. It can also help identify potential issues or malfunctions that may be causing the engine to work harder than necessary.

Can Engine Load be adjusted?

Yes, engine load can be adjusted by modifying the amount of air or fuel that is being supplied to the engine. This can be done through various methods such as adjusting the throttle or fuel injectors, or changing the gear ratio in a vehicle.

Similar threads

  • Mechanical Engineering
Replies
6
Views
1K
  • Mechanical Engineering
2
Replies
64
Views
8K
Replies
4
Views
133
  • Mechanical Engineering
Replies
16
Views
7K
Replies
1
Views
896
  • Mechanical Engineering
Replies
6
Views
389
  • Mechanical Engineering
Replies
18
Views
8K
  • Mechanical Engineering
Replies
3
Views
122
Replies
2
Views
1K
Replies
3
Views
2K
Back
Top