What is the intersection of two spans?

  • MHB
  • Thread starter mathmari
  • Start date
  • Tags
    Intersection
In summary, the intersection of the spans $\text{Lin}(v_1, v_2, v_3)\cap \text{Lin}(w_1, w_2)$ is the zero vector. To find this intersection, we can solve the system of equations formed by setting the two linear combinations equal to each other and using Gaussian elimination to obtain the values of the variables. In this case, we find that the only solution is when all variables are equal to zero, resulting in the zero vector.
  • #1
mathmari
Gold Member
MHB
5,049
7
Hey! :eek:

Let \begin{equation*}v_1:=\begin{pmatrix}1 \\ 2\\ -1 \\ 3\end{pmatrix}, v_2:=\begin{pmatrix}1 \\ 1\\ 1 \\ 1\end{pmatrix}, v_3:=\begin{pmatrix}-1 \\ 1\\ -5 \\ 3\end{pmatrix} , w_1:=\begin{pmatrix}1 \\ 2\\ -3 \\ 3\end{pmatrix}, w_2:=\begin{pmatrix}1 \\ 0\\ 0 \\ 1\end{pmatrix}\in \mathbb{R}^4\end{equation*}

I want to calculate the intersection of the spans $\text{Lin}(v_1, v_2, v_3)\cap \text{Lin}(w_1, w_2)$.We have \begin{align*}&\text{Lin}(v_1, v_2, v_3)=\left \{\lambda_1v_1+\lambda_2v_2+\lambda_3v_3 : \lambda_1, \lambda_2, \lambda_3\in \mathbb{R}\right \}=\left \{\lambda_1\begin{pmatrix}1 \\ 2\\ -1 \\ 3\end{pmatrix}+\lambda_2\begin{pmatrix}1 \\ 1\\ 1 \\ 1\end{pmatrix}+\lambda_3\begin{pmatrix}-1 \\ 1\\ -5 \\ 3\end{pmatrix}: \lambda_1, \lambda_2, \lambda_3\in \mathbb{R}\right \} \\ & \text{Lin}(w_1, w_2)=\left \{\tilde{\lambda}_1w_1+\tilde{\lambda}_2w_2 : \tilde{\lambda}_1, \tilde{\lambda}_2\in \mathbb{R}\right \}=\left \{\tilde{\lambda}_1\begin{pmatrix}1 \\ 2\\ -3 \\ 3\end{pmatrix}+\tilde{\lambda}_2\begin{pmatrix}1 \\ 0\\ 0 \\ 1\end{pmatrix} : \tilde{\lambda}_1, \tilde{\lambda}_2\in \mathbb{R}\right \}\end{align*}

How could we continue?

Do we have to solve a system? We take a vector $(a,b,c,d)^T$ and try to write it as a linear combination of the $v_i$'s and then as a linear combination of the $w_i$'s ?

(Wondering)
 
Physics news on Phys.org
  • #2
Hey mathmari!

The intersection is all vectors that can both be written as $\lambda_1v_1+\lambda_2v_2+\lambda_3v_3$ and as $\tilde{\lambda}_1w_1+\tilde{\lambda}_2w_2$.
So let's solve:
$$
\lambda_1v_1+\lambda_2v_2+\lambda_3v_3 = \tilde{\lambda}_1w_1+\tilde{\lambda}_2w_2 \\

\implies \lambda_1\begin{pmatrix}1 \\ 2\\ -1 \\ 3\end{pmatrix}+\lambda_2\begin{pmatrix}1 \\ 1\\ 1 \\ 1\end{pmatrix}+\lambda_3\begin{pmatrix}-1 \\ 1\\ -5 \\ 3\end{pmatrix} = \tilde{\lambda}_1\begin{pmatrix}1 \\ 2\\ -3 \\ 3\end{pmatrix}+\tilde{\lambda}_2\begin{pmatrix}1 \\ 0\\ 0 \\ 1\end{pmatrix}\\

\implies \lambda_1\begin{pmatrix}1 \\ 2\\ -1 \\ 3\end{pmatrix}+\lambda_2\begin{pmatrix}1 \\ 1\\ 1 \\ 1\end{pmatrix}+\lambda_3\begin{pmatrix}-1 \\ 1\\ -5 \\ 3\end{pmatrix} - \tilde{\lambda}_1\begin{pmatrix}1 \\ 2\\ -3 \\ 3\end{pmatrix}-\tilde{\lambda}_2\begin{pmatrix}1 \\ 0\\ 0 \\ 1\end{pmatrix} = 0 \\

\implies \begin{pmatrix}
1 & 1 & -1 & 1 & 1 \\
2 & 1 & 1 & 2 & 0 \\
-1 & 1 & -5 & -3 & 0 \\
3 & 1 & 3 & 3 & 1\end{pmatrix}\begin{pmatrix}\lambda_1 \\ \lambda_2\\ \lambda_3 \\ - \tilde{\lambda}_1\\ -\tilde{\lambda}_2\end{pmatrix} = 0
$$
Can we solve that? (Wondering)
 
  • #3
We apply the Gauss algorithm and we get the following: \begin{align*}\begin{pmatrix}
1 & 1 & -1 & 1 & 1 \\
2 & 1 & 1 & 2 & 0 \\
-1 & 1 & -5 & -3 & 0 \\
3 & 1 & 3 & 3 & 1\end{pmatrix} &\rightarrow \begin{pmatrix}
1 & 1 & -1 & 1 & 1 \\
0 & -1 & 3 & 0 & -2 \\
0 & 2 & -6 & -2 & 1 \\
0 & -2 & 6 & 0 & -2\end{pmatrix}\rightarrow \begin{pmatrix}
1 & 1 & -1 & 1 & 1 \\
0 & -1 & 3 & 0 & -2 \\
0 & 2 & -6 & -2 & 1 \\
0 & 0 & 0 & -2 & -1\end{pmatrix} \\ & \rightarrow \begin{pmatrix}
1 & 1 & -1 & 1 & 1 \\
0 & -1 & 3 & 0 & -2 \\
0 &0 & 0 & -2 & 1 \\
0 & 0 & 0 & -2 & -1\end{pmatrix}\rightarrow \begin{pmatrix}
1 & 1 & -1 & 1 & 1 \\
0 & -1 & 3 & 0 & -2 \\
0 &0 & 0 & -2 & 1 \\
0 & 0 & 0 & 0 & -2\end{pmatrix}\end{align*}

From here we get the following:
\begin{align*}\begin{pmatrix}
1 & 1 & -1 & 1 & 1 \\
2 & 1 & 1 & 2 & 0 \\
-1 & 1 & -5 & -3 & 0 \\
3 & 1 & 3 & 3 & 1\end{pmatrix}\begin{pmatrix}\lambda_1 \\ \lambda_2\\ \lambda_3 \\ - \tilde{\lambda}_1\\ -\tilde{\lambda}_2\end{pmatrix} = 0&\Rightarrow \begin{pmatrix}
1 & 1 & -1 & 1 & 1 \\
0 & -1 & 3 & 0 & -2 \\
0 &0 & 0 & -2 & 1 \\
0 & 0 & 0 & 0 & -2\end{pmatrix}\begin{pmatrix}\lambda_1 \\ \lambda_2\\ \lambda_3 \\ - \tilde{\lambda}_1\\ -\tilde{\lambda}_2\end{pmatrix} = 0 \\ & \Rightarrow \left\{\begin{matrix}\lambda_1+\lambda_2-\lambda_3-\tilde{\lambda}_1-\tilde{\lambda}_2=0 \\ -\lambda_2+\lambda_3+2\tilde{\lambda}_2=0 \\ 2\tilde{\lambda}_1-\tilde{\lambda}_2=0 \\ 2\tilde{\lambda}_2=0\end{matrix}\right.\end{align*}

From the last equation we get $\tilde{\lambda}_2=0$. From the third one we get then $\tilde{\lambda}_1=0$. From the second equation we get then $\lambda_2=\lambda_3$. Form the first equation we get $\lambda_1=0$.

Does this mean that the intersection contain only the zero vector? (Wondering)
 
  • #4
Suppose we fill in your solution:
$$\begin{pmatrix}
1 & 1 & -1 & 1 & 1 \\
2 & 1 & 1 & 2 & 0 \\
-1 & 1 & -5 & -3 & 0 \\
3 & 1 & 3 & 3 & 1\end{pmatrix}\begin{pmatrix}0 \\ \lambda_2\\ \lambda_2 \\ 0 \\ 0 \end{pmatrix}
= \begin{pmatrix}0 \\ 2\lambda_2\\ -4\lambda_2 \\ 4\lambda_2 \end{pmatrix}
$$

That is not always zero is it? (Wondering)

What did you do in the second step of the Gaussian elimination? (Worried)
 
  • #5
Klaas van Aarsen said:
Suppose we fill in your solution:
$$\begin{pmatrix}
1 & 1 & -1 & 1 & 1 \\
2 & 1 & 1 & 2 & 0 \\
-1 & 1 & -5 & -3 & 0 \\
3 & 1 & 3 & 3 & 1\end{pmatrix}\begin{pmatrix}0 \\ \lambda_2\\ \lambda_2 \\ 0 \\ 0 \end{pmatrix}
= \begin{pmatrix}0 \\ 2\lambda_2\\ -4\lambda_2 \\ 4\lambda_2 \end{pmatrix}
$$

That is not always zero is it? (Wondering)

What did you do in the second step of the Gaussian elimination? (Worried)

I found a typo at the last step.

It should be as follows:

\begin{align*}\begin{pmatrix}
1 & 1 & -1 & 1 & 1 \\
2 & 1 & 1 & 2 & 0 \\
-1 & 1 & -5 & -3 & 0 \\
3 & 1 & 3 & 3 & 1\end{pmatrix}\begin{pmatrix}\lambda_1 \\ \lambda_2\\ \lambda_3 \\ - \tilde{\lambda}_1\\ -\tilde{\lambda}_2\end{pmatrix} = 0&\Rightarrow \begin{pmatrix}
1 & 1 & -1 & 1 & 1 \\
0 & -1 & 3 & 0 & -2 \\
0 &0 & 0 & -2 & 1 \\
0 & 0 & 0 & 0 & -2\end{pmatrix}\begin{pmatrix}\lambda_1 \\ \lambda_2\\ \lambda_3 \\ - \tilde{\lambda}_1\\ -\tilde{\lambda}_2\end{pmatrix} = 0 \\ & \Rightarrow \left\{\begin{matrix}\lambda_1+\lambda_2-\lambda_3-\tilde{\lambda}_1-\tilde{\lambda}_2=0 \\ -\lambda_2+3\lambda_3+2\tilde{\lambda}_2=0 \\ 2\tilde{\lambda}_1-\tilde{\lambda}_2=0 \\ 2\tilde{\lambda}_2=0\end{matrix}\right.\end{align*}

From the last equation we get $\tilde{\lambda}_2=0$. From the third one we get then $\tilde{\lambda}_1=0$. From the second equation we get then $\lambda_2=3\lambda_3$. Form the first equation we get $\lambda_1=0$.

And so with both linear combinations we get the zero vector, correct? (Wondering)
 
  • #6
mathmari said:
From the last equation we get $\tilde{\lambda}_2=0$. From the third one we get then $\tilde{\lambda}_1=0$. From the second equation we get then $\lambda_2=3\lambda_3$. Form the first equation we get $\lambda_1=0$.

And so with both linear combinations we get the zero vector, correct?

If I substitute the new solution, I still don't get a zero vector. (Worried)
 
  • #7
Klaas van Aarsen said:
If I substitute the new solution, I still don't get a zero vector. (Worried)

Oh sorry, in my previous post I didn't corrected the value of $\lambda_1$.

It should be:

From the last equation we get $\tilde{\lambda}_2=0$. From the third one we get then $\tilde{\lambda}_1=0$. From the second equation we get then $\lambda_2=3\lambda_3$. Form the first equation we get $\lambda_1=-2\lambda_3$.

Therefore we have the following:

\begin{align*}-2\lambda_3\begin{pmatrix}1 \\ 2\\ -1 \\ 3\end{pmatrix}+3\lambda_3\begin{pmatrix}1 \\ 1\\ 1 \\ 1\end{pmatrix}+\lambda_3\begin{pmatrix}-1 \\ 1\\ -5 \\ 3\end{pmatrix} &=\lambda_3\begin{pmatrix}-2 \\ -4\\ 2 \\ -6\end{pmatrix}+\lambda_3\begin{pmatrix}3 \\ 3\\ 3 \\ 3\end{pmatrix}+\lambda_3\begin{pmatrix}-1 \\ 1\\ -5 \\ 3\end{pmatrix} \\ & =\lambda_3\left [\begin{pmatrix}-2 \\ -4\\ 2 \\ -6\end{pmatrix}+\begin{pmatrix}3 \\ 3\\ 3 \\ 3\end{pmatrix}+\begin{pmatrix}-1 \\ 1\\ -5 \\ 3\end{pmatrix}\right ]\\ & =\lambda_3\begin{pmatrix}0 \\ 0\\ 0 \\ 0\end{pmatrix} \\ & =\begin{pmatrix}0 \\ 0\\ 0 \\ 0\end{pmatrix}\end{align*}
 
  • #8
Ah okay.
So yes, then we have found indeed that the intersection is only the zero vector. (Nod)

Moreover, the vectors $v_1,v_2,v_3$ are linearly dependent. (Nerd)
 
  • #9
Klaas van Aarsen said:
Ah okay.
So yes, then we have found indeed that the intersection is only the zero vector. (Nod)

Moreover, the vectors $v_1,v_2,v_3$ are linearly dependent. (Nerd)

Ah ok! Thank you! (Sun)
 

1. What is the definition of "intersection of two spans"?

The intersection of two spans refers to the set of all points that are common to both spans. In other words, it is the area or region where the two spans overlap.

2. How is the intersection of two spans calculated?

The intersection of two spans is calculated by finding the overlapping points between the two spans. This can be done by solving the equations of the two spans simultaneously to find the coordinates of the points where they intersect.

3. Can the intersection of two spans be empty?

Yes, it is possible for the intersection of two spans to be empty. This occurs when the two spans do not overlap at any point, meaning they are parallel or do not intersect in the given space.

4. What is the significance of the intersection of two spans?

The intersection of two spans is significant in geometry and mathematics as it helps to determine the relationship between the two spans. It can also be used to find common solutions to equations and to solve problems involving lines and planes in three-dimensional space.

5. How is the intersection of two spans represented graphically?

The intersection of two spans can be represented graphically by plotting the equations of the two spans on a coordinate plane and identifying the points where they intersect. This can help visualize the overlapping region and better understand the relationship between the two spans.

Similar threads

  • Linear and Abstract Algebra
Replies
3
Views
2K
  • Linear and Abstract Algebra
Replies
10
Views
984
  • Linear and Abstract Algebra
Replies
34
Views
2K
  • Linear and Abstract Algebra
Replies
14
Views
1K
  • Linear and Abstract Algebra
Replies
8
Views
1K
Replies
31
Views
2K
  • Linear and Abstract Algebra
Replies
11
Views
957
  • Linear and Abstract Algebra
Replies
5
Views
1K
  • Linear and Abstract Algebra
Replies
14
Views
2K
  • Linear and Abstract Algebra
Replies
4
Views
1K
Back
Top