For any measure space (X,\mathcal{S},μ), and any measurable function g:\rightarrow [-∞,∞], ∫|g|dμ=0\implies g=0 a.e.
proof:
Define A=\{x\in X: g(x)≠0\}. For all naturals n, define A_n=\{x\in X: |g(x)|>\frac{1}{n}\}.
\frac{1}{n}μ(A_n)=∫\frac{1}{n}x_{A_n}dμ≤∫|g|dμ=0, so μ(A_n)=0 for all n...