Recent content by Erik P
-
E
Show that the equipotential lines are circles
Thank you for the help and also for being patient with me :)- Erik P
- Post #16
- Forum: Introductory Physics Homework Help
-
E
Show that the equipotential lines are circles
\begin{equation} 0 = y^2 + z^2 + \frac{2000a^2q_0}{3W_0}-\frac{2}{3} \Rightarrow 0 = y^2 + z^2 - \frac{1}{3} \end{equation} Then r should be sqrt(1/3), right? with a center in (0,0)- Erik P
- Post #14
- Forum: Introductory Physics Homework Help
-
E
Show that the equipotential lines are circles
\begin{equation} 1000 = A(2 - 3y^2 - 3z^2) \end{equation} \begin{equation} 0 = A(2 - 3y^2 - 3z^2) - 1000 \end{equation} \begin{equation} A = \frac{W_0}{2a^2q_0} \end{equation} \begin{equation} 0 = \frac{W_0}{2a^2q_0}(2 - 3y^2 - 3z^2) - 1000 \end{equation}- Erik P
- Post #12
- Forum: Introductory Physics Homework Help
-
E
Show that the equipotential lines are circles
oooohhhh.. i think i see it, give me a few mins to look at it- Erik P
- Post #10
- Forum: Introductory Physics Homework Help
-
E
Show that the equipotential lines are circles
\begin{equation} V(1,y,z) = A(2 - 3y^2 - 3z^2) \end{equation}- Erik P
- Post #9
- Forum: Introductory Physics Homework Help
-
E
Show that the equipotential lines are circles
Five, I guess?- Erik P
- Post #7
- Forum: Introductory Physics Homework Help
-
E
Show that the equipotential lines are circles
zero? Sorry, not entirely following here.- Erik P
- Post #5
- Forum: Introductory Physics Homework Help
-
E
Show that the equipotential lines are circles
I'm not entirely sure to be honest.- Erik P
- Post #3
- Forum: Introductory Physics Homework Help
-
E
Show that the equipotential lines are circles
Homework Statement In a specific area of the space, an electrical potential is given as: \begin{equation} V(x,y,z) = A(2x^2 - 3y^2 - 3z^2) \end{equation} where A is a constant. a.) Determine the electrical field E for any given point in the area. A test charge q_0 is moved from the point...- Erik P
- Thread
- Circles Electrical potential equipotential Lines Magnetic field
- Replies: 16
- Forum: Introductory Physics Homework Help
-
E
Electrical energy converted to heat in coil
I see the problem :D its from 0 to infinity, not 0 to t. Also the t isn't multiplied on the fraction, its only present as an exponent, so t=0 doesn't make the entire thing 0 it just makes the e part equal to 1 and for t = infinity we get e expression becomes 0, which means we have 0 - (above...- Erik P
- Post #16
- Forum: Introductory Physics Homework Help
-
E
Electrical energy converted to heat in coil
I ran it through wolfram alpha to check, and surely you were right about the exponent. I am however a little confused now because I get the following, keep in mind the i had to change the name of some things, like R' is now R_0, V_0 is now v etc. as you can see I now have a negative value and...- Erik P
- Post #14
- Forum: Introductory Physics Homework Help
-
E
Electrical energy converted to heat in coil
Intergrating over the power from 0 to t, at which point I get the same equation :) well sort of :( The problem is the integration of e^(x^(2)), I looked it up and it seems to involve 1/2 sqrt(pi) erf which isn't something I recall having had about in calculus. The answer sheet gives the equation...- Erik P
- Post #12
- Forum: Introductory Physics Homework Help
-
E
Electrical energy converted to heat in coil
Hey, thanks for replying. Was away when you sent that. The instantaneous power dissipated in the resistor is the product of the square of the current and the resistance over which the current runs? \begin{equation} P = I^2R \Rightarrow P' = i'(t)^2R' \end{equation} However this doesn't...- Erik P
- Post #10
- Forum: Introductory Physics Homework Help
-
E
Electrical energy converted to heat in coil
I updated the question so all the details are there.- Erik P
- Post #8
- Forum: Introductory Physics Homework Help
-
E
Electrical energy converted to heat in coil
Hmm... I think my explanation is causing more confusion than anything. Give me a few minutes to write the full original text in.- Erik P
- Post #7
- Forum: Introductory Physics Homework Help