The full problem is this :
There is a one dimensional potential given by :-
V(x) = 0 for 0< x < x1 (Region i)
= V for x1 < x <x2 (Region ii)
= 0 for x2 < x < L (Region iii)
The potential is periodic, meaning V(x+L) = V(x).
Find the wavefunction...
That was exactly my question. For same eigenvalue E, you have two eigenfunctions, one for +k(moving right) and the other for -k(moving left). I just wanted to know whether these two wavefunctions will be the same or different. I tried solving it, but realized that the wavefunction comes out to...
Thanks vanhees for the reply. I am not considering time dependence. Suppose I am considering a periodic case where L is the period. In that case even the rightmost side will have both incoming and outgoing wave packet. Now the thing is that when I change the wave vector k to -k ,I get another...
Suppose I have a region from 0 to L. I have a barrier potential V from x1 to x2, such that 0<x1<x2<L. The potential is 0 everywhere. I have obtained the wave-function by considering the propagation from left to right. Now if I consider the propagation from right to left should I get a different...