Ah, this is a common misunderstanding, due to a notation issue. If f : A \rightarrow B is any function and B_0 \subset B, then by f^{-1}(B_0) people always mean the set \{ x \in A | f(x) \in B_0 \}. Notice that this has meaning even if f is not a bijection. Likewise, if A_0 \subset A, we have...