Figure:
a)
The mechanical energy of the sphere is conserved because the weight is the only force which does work. My problem with this question is mostly because the original picture (which I tried to recreate here) is kind of ambiguous, as in I don't know if H already accounts for the radius...
I solved this question correctly, however I have a question regarding how I should work with the weight of the firefighter climbing the ladder. When drawing the force diagram for this problem, I should only include forces acting on the ladder, right? Which means I would represent the normal...
Let v be the speed of the block and x elongation of the spring beyond the equilibrium point. Initially, v = 0 and x = 0. At the maximum elongation, the block also has v = 0, it has moved a distance equal to x (parallel to the plane) and the variation of height is equal to -x⋅sin(53°).
W(FNC) =...
a) Let m be the vehicle's mass, M the truck's mass, vt the truck's speed, vc the car's speed, vf the final speed, θ the angle both vehicles make with the horizontal axis (west-east direction) after the collision.
Conservation of linear momentum:
In the x direction: M vt = (m + M) vf cos(θ)
In...
The object is:
My attempt at a solution:
I divided the object into 3 different rectangles and found the coordinates for the center of mass of each one, considering the origin at point "O".
Then I found the mass of each rectangle, assuming the object has an area density of σ.
m1 = 15σ; m2= 6σ...
a)
Solution given: F = - x î - y j
b)
The equilibrium position happens when F = 0.
x = 0 and y = 0 is the point of equilibrium.
Solution given: (0, 0)
c)
Since the particle has a circular trajectory the trajectory equation becomes x^2 + y^2 = R^2.
The maximum potential energy the...