Two-dimensional perfectly inelastic collision between two vehicles

AI Thread Summary
The discussion centers on analyzing a perfectly inelastic collision between a truck and a car using conservation of momentum principles. The calculated final speed of the combined vehicles after the collision is 57.9 km/h, with a direction of 11.85° below the horizontal axis. The energy dissipated during the collision is approximately 4.77 × 10^5 J. Participants confirm the calculations and suggest using momentum as a vector for a more straightforward approach to determine final velocity and angle. The conversation emphasizes the importance of correctly applying momentum conservation equations to resolve discrepancies in results.
Lone Wolf
Messages
10
Reaction score
1
Homework Statement
A truck with mass 7.5 ton moving at a speed of 65 km/h in the west-east direction, collides with a car of mass 1100 kg moving from north to south at a speed of 93 km/h. After the collision, both vehicles move together.
a) What is the speed and direction of motion of the two vehicles after the collision?
b) How much energy is dissipated in the collision?
Relevant Equations
Conservation of linear momentum equation: m1v1 + m2v2 = m1v1f + m2v2f
Kinetic energy equation: 1/2 mv²
a) Let m be the vehicle's mass, M the truck's mass, vt the truck's speed, vc the car's speed, vf the final speed, θ the angle both vehicles make with the horizontal axis (west-east direction) after the collision.
Conservation of linear momentum:
In the x direction: M vt = (m + M) vf cos(θ)
In the y direction (I considered the positive direction from south to north): - m vc = (m + M) vf sin(θ)
Solving the system for θ:
θ= arctan( (-m vc)/(M vt) ) = ( (-1.1*93)/(7.5*65) ) = -11.85°
Solving for vf:
vf = (M vt)/((m + M) cos (θ)) = (7.5 * 65)/( (7.5 + 1.1)*cos(-11.85°) ) = 57.9 km/h
So the speed of the vehicles would be 57.9 km/h with the direction 11.85° below the horizontal axis.

b) ΔK = Kf - Ki = [(7.5 + 1.1)*1e3 * (57.9e3/3600)² - 7.5e3 * (65e3/3600)² - 1.1e3 * (95e3/3600)²]/2 = - 4,77 × 10^5 J
So 4,77 × 10^5 J were dissipated with the collision

The solutions given are:
a) 48.9 km/h, 55°
b) 0.8 × 10^6 J

I've tried doing this problem twice now and I always get the same result. Please help me find my error. Thanks.
 
Physics news on Phys.org
I confirm your results.
 
  • Like
Likes Lone Wolf
Chestermiller said:
I confirm your results.
Thank you for taking your time. I appreciate it!
 
Lone Wolf said:
Problem Statement: A truck with mass 7.5 ton moving at a speed of 65 km/h in the west-east direction, collides with a car of mass 1100 kg moving from north to south at a speed of 93 km/h. After the collision, both vehicles move together.
a) What is the speed and direction of motion of the two vehicles after the collision?
b) How much energy is dissipated in the collision?
Relevant Equations: Conservation of linear momentum equation: m1v1 + m2v2 = m1v1f + m2v2f
Kinetic energy equation: 1/2 mv²

a) Let m be the vehicle's mass, M the truck's mass, vt the truck's speed, vc the car's speed, vf the final speed, θ the angle both vehicles make with the horizontal axis (west-east direction) after the collision.
Conservation of linear momentum:
In the x direction: M vt = (m + M) vf cos(θ)
In the y direction (I considered the positive direction from south to north): - m vc = (m + M) vf sin(θ)
Solving the system for θ:
θ= arctan( (-m vc)/(M vt) ) = ( (-1.1*93)/(7.5*65) ) = -11.85°
Solving for vf:
vf = (M vt)/((m + M) cos (θ)) = (7.5 * 65)/( (7.5 + 1.1)*cos(-11.85°) ) = 57.9 km/h
So the speed of the vehicles would be 57.9 km/h with the direction 11.85° below the horizontal axis.

b) ΔK = Kf - Ki = [(7.5 + 1.1)*1e3 * (57.9e3/3600)² - 7.5e3 * (65e3/3600)² - 1.1e3 * (95e3/3600)²]/2 = - 4,77 × 10^5 J
So 4,77 × 10^5 J were dissipated with the collision

The solutions given are:
a) 48.9 km/h, 55°
b) 0.8 × 10^6 J

I've tried doing this problem twice now and I always get the same result. Please help me find my error. Thanks.

Here's an interesting idea using momentum as a vector. Conservation of momentum means it's the same before and after the collision. So, you could have calculated the total momentum of the system before the collision. Let's use ##\vec{p}## for momentum.

##(M+m)\vec{v_f} = \vec{p_f} = \vec{p_i} = (Mv_t, mv_c)##

So, all the information about the magnitude and direction of the final momentum is already all there in the initial velocities and masses of the vehicles.

To get the final velocity, you can just divide this by the combined mass ##M+m##. And you can just read off the tangent of the angle ##\theta##, which is also the same before and after.
 
  • Like
Likes Lone Wolf
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top