Oh right! So I got
$$H = \frac{-ħ^2}{2m}\frac{d^2}{dx_1^2}-\frac{-ħ^2}{2m}\frac{d^2}{dx_2^2}+\frac{1}{2}A(\frac{R^2}{2}+\frac{r^2}{2})+ \frac{1}{2}Br^2$$
for the Hamiltonian.
For the ##\frac{d^2}{dx_1^2}## part I get that:
$$...
Thanks for the reply
Rewriting the Hamiltonian in terms of those new variables, I get
$$H = \frac{-ħ^2}{2m}\frac{d^2}{dx_1^2}-\frac{-ħ^2}{2m}\frac{d^2}{dx_2^2}+\frac{1}{2}A(R^2-2x_1x_2)+ \frac{1}{2}Br^2$$
This seems incorrect though because of the factor of ##-2x_1x_2## which is due to ##R^2 =...
Homework Statement
Two identical particles, each of mass m, move in one dimension in the potential
$$V = \frac{1}{2}A(x_1^2+x_2^2)+ \frac{1}{2}B(x_1-x_2)^2$$
where A and B are positive constants and ##x_1## and ##x_2## denote the positions of the particles.
a) Show that the Schrodinger equation...
Oh right! I was actually using the small velocity approximation...woops. Using $$E = \frac {mc^2} {\sqrt{1-\frac{v^2}{c^2}}}$$ where E would be 938MeV, I now obtain a speed of 0.9999998c. Thanks!
Homework Statement
The question states that an electron and positron, each with rest mass energy of 511keV collide head on and create a proton and antiproton each with rest mass energy 938MeV. The question asks us to find the minimum kinetic energy of the electron and positron.
Homework...