I'd like to show that if there exists some operator \overset {\wedge}{x} which satisfies \overset {-}{x} = <\psi|\overset {\wedge}{x}|\psi> , \overset {\wedge}{x}|x> = x|x> be correct.
\overset {-}{x} = \int <\psi|x> (\int<x|\overset {\wedge}{x}|x'><x'|\psi> dx')dx = \int <\psi|x>...
Oh, "find something at the same time" - what I want to know exactly! I have just thought classically that a particle known to be in state A cannot be B simultaneously (improper word...) ignoring the true meaning of probability amplitudes.
I appreciate your answer.
It is better for you to have studied "Feynman lectures on Physics Vol.3", because I cannot distinguish whether the words or expressions are what Feynman uses only or not and in order to summarize my questions here, I have to just quote the contents of the book.
However, one thing I notice is...