We have the integral:
I(s)=\int_{0}^{\infty}\log\left(1+\frac{s^{2}}{4\pi^{2}} \log^{2}(1+ix)\right ) e^{-2\pi nx}dx
Where s is a complex parameter, and n is a positive integer.
Things i tried:
Set \log(1+ix)=y , so that
I(s)=-i\int_{c}\log\left(1+\frac{s^{2}}{4\pi^{2}}y^{2} \right...