Recent content by newmike

  1. N

    Series expansion of integral (ln(x))^2/(1+x^2) dx from 0 to infinity

    Hi everyone, once I again I turn to all of your expertise in complex analysis. Homework Statement Evaluate \int\frac{(ln(x))^{2}}{1+x^{2}}dx from 0 to +infinity by appropriate series expansion of the integrand to obtain 4\sum(-1)^{n}(2n+1)^{-3} where the sum goes from n=0 to...
  2. N

    Variable exponent causing number of singularities to change for residue?

    Homework Statement Determine the nature of the singularities of the following function and evaluate the residues. \frac{z^{-k}}{z+1} for 0 < k < 1 Homework Equations Residue theorem, Laurent expansions, etc. The Attempt at a Solution Ok this is a weird one since we've...
  3. N

    Evaluating Contour Integral w/ Multiple Singularities

    Ok I'll accept it ;) That makes sense. Now I feel more confident with the result of zero. Thanks again, both of you, I've gone crazy over this one problem! Take care, -Mike
  4. N

    Evaluating Contour Integral w/ Multiple Singularities

    Thanks for all the help guys, I applied cauchy's integral formula on both integrals and I also got zero. Using: \oint\frac{dz}{z-1} I let f(z)=1, and f eval'd at the singularity is obviously f(1)=1, so I said \oint\frac{dz}{z-1} = 2\pii(1) = 2\pii Likewise, I got the same answer for the...
  5. N

    Evaluating Contour Integral w/ Multiple Singularities

    Ok, I used this and still got zero. I'm going to try use cauchy's integral formula on each one as you both are suggesting. Thanks again.
  6. N

    Evaluating Contour Integral w/ Multiple Singularities

    Ok, let me see if that changes things. Thanks.
  7. N

    Evaluating Contour Integral w/ Multiple Singularities

    Well I don't understand how that works since the domain still has two singularities. Are you suggesting apply cauchy's integral formula one at a time. Is that valid? I'm new to the topic and trying to get my head around it. I'll try it out to see what I get.
  8. N

    Evaluating Contour Integral w/ Multiple Singularities

    Contour integral with multiple singularities inside domain without residue theorem?? Homework Statement Evaluate \oint\frac{dz}{z^{2}-1} where C is the circle \left|z\right| = 2 Homework Equations Just learned contour integrals, so not much. Ok to use Cauchy's Integral formula (if...
Back
Top